Skip to main content
Log in

Nonlinear transport of the Wigner crystal in symmetric and asymmetric FET-like structures

Nonlinear transport of the Wigner crystal on superfluid 4He in quasi-one-dimensional channels with symmetric and asymmetric constrictions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

When floating on a two-dimensional surface of superfluid 4He, electrons arrange themselves in two-dimensional crystalline structure known as Wigner crystal. In channels, the boundaries interfere the crystalline order and in case of very narrow channels one observes a quasi-one-dimensional (quasi-1D) Wigner crystal formed by just a few rows of electrons and, ultimately, one row in the “quantum wire” regime. Recently, the “quantum wire” regime was accessed experimentally [D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)] resulting in unusual transport phenomena such as, e.g., oscillations in the electron conductance. Using molecular dynamics simulations, we study the nonlinear transport of electrons in channels with various types of constrictions: single and multiple symmetric and asymmetric geometrical constrictions with varying width and length, and saddle-point-type potentials with varying gate voltage. In particular, we analyze the average particle velocity of the particles and the corresponding electron current versus the driving force or the gate voltage. We have revealed a significant difference in the dynamics for long and short constrictions: The oscillations of the average velocity of the particles for the systems with short constrictions exhibit a clear correlation with the transitions between the states with different numbers of rows of particles; on the other hand, for the systems with longer constrictions these oscillations are suppressed. The obtained results qualitatively agree with the experimental observations. Next, we propose a FET-like structure that consists of a channel with asymmetric constrictions. We show that applying a transverse bias results either in increase of the average particle velocity or in its suppression thus allowing a flexible control tool over the electron transport. The advantage of the asymmetric FET is that it does not have a gate and it allows an easy control of relatively large electron flow. Furthermore, the asymmetric device can be used for rectification of an ac-driven electron flow. Our results bring important insights into the dynamics of electrons floating on the surface of superfluid 4He in channels with constrictions and allow the effective control over the electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates, edited by E.Y. Andrei (Kluwer Academic, Dordrecht, 1997)

  2. Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer-Verlag, Berlin, 2004)

  3. D. Rees, K. Kono, J. Low Temp. Phys. 158, 301 (2010)

    Article  ADS  Google Scholar 

  4. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)

    Article  ADS  Google Scholar 

  5. G. Piacente, I.V. Schweigert, J.J. Betouras, F.M. Peeters, Phys. Rev. B 69, 045324 (2004)

    Article  ADS  Google Scholar 

  6. G. Piacente, F.M. Peeters, Phys. Rev. B 72, 205208 (2005)

    Article  ADS  Google Scholar 

  7. M. Araki, H. Hayakawa, Phys. Rev. B 86, 165412 (2012)

    Article  ADS  Google Scholar 

  8. E.P. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  9. R.S. Crandall, R. Williams, Phys. Lett. A 34, 404 (1971)

    Article  ADS  Google Scholar 

  10. Y. Iye, J. Low Temp Phys. 40, 441 (1980)

    Article  ADS  Google Scholar 

  11. J. Tempere, I.F. Silvera, J.T. Devreese, Surf. Sci. Rep. 62, 159 (2007)

    Article  ADS  Google Scholar 

  12. A. Kristensen, K. Djerfi, P. Fozooni, M.J. Lea, P.J. Richardson, A. Santrich-Badal, A. Blackburn, R.W. van der Heijden, Phys. Rev. Lett. 77, 1350 (1996)

    Article  ADS  Google Scholar 

  13. M.I. Dykman, Y.G. Rubo, Phys. Rev. Lett. 78, 4813 (1997)

    Article  ADS  Google Scholar 

  14. K. Shirahama, K. Kono, Phys. Rev. Lett. 74, 781 (1995)

    Article  ADS  Google Scholar 

  15. W.F. Vinen, J. Phys.: Condens. Matter 11, 9709 (1999)

    ADS  Google Scholar 

  16. R. Calion, Ph. Choquard, M. Navet, in Ordering in Two Dimensions, edited by S.K. Sinha (Elsevier, New York, 1980), p. 317

  17. V.M. Bedanov, F.M. Peeters, Phys. Rev. B 49, 2667 (1994)

    Article  ADS  Google Scholar 

  18. E. Rousseau, D. Ponarin, L. Hristakos, O. Avenel, E. Varoquaux, Yu. Mukharsky, Phys. Rev. B 79, 045406 (2009)

    Article  ADS  Google Scholar 

  19. P. Glasson, V. Dotsenko, P. Fozooni, M.J. Lea, W. Bailey, G. Papageorgiou, S.E. Andresen, A. Kristensen, Phys. Rev. Lett. 87, 176802 (2001)

    Article  ADS  Google Scholar 

  20. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)

    Article  ADS  Google Scholar 

  21. G. Papageorgiou, P. Glasson, K. Harrabi, V. Antonov, E. Collin, P. Fozooni, P.G. Frayne, M.J. Lea, D.G. Rees, Y. Mukharsky, Appl. Phys. Lett. 86, 153106 (2005)

    Article  ADS  Google Scholar 

  22. J. Klier, I. Doicescu, P. Leiderer, J. Low Temp. Phys. 121, 603 (2000)

    Article  ADS  Google Scholar 

  23. G. Sabouret, F.R. Bradbury, S. Shankar, J.A. Bert, S.A. Lyon, Appl. Phys. Lett. 92, 082104 (2008)

    Article  ADS  Google Scholar 

  24. D.V. Tkachenko, V.R. Misko, F.M. Peeters, Phys. Rev. E 80, 051401 (2009)

    Article  ADS  Google Scholar 

  25. D.V. Tkachenko, V.R. Misko, F.M. Peeters, Phys. Rev. E 82, 051102 (2010)

    Article  ADS  Google Scholar 

  26. D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav R. Misko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasylenko, A., Misko, V. Nonlinear transport of the Wigner crystal in symmetric and asymmetric FET-like structures. Eur. Phys. J. B 88, 105 (2015). https://doi.org/10.1140/epjb/e2015-60217-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60217-0

Keywords

Navigation