Skip to main content
Log in

Nutrient accumulation in leaves of Fe-deficient cucumber plants treated with natural Fe complexes

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Plants mainly rely on a mixture of Fe complexes with different organic ligands, like carboxylates and soluble fractions of water-extractable humic substances (WEHSs), to sustain the supply of this micronutrient. It has been demonstrated that the Fe-WEHS complex is more efficiently acquired by plant roots as it enhances functionality of the mechanisms involved in Fe acquisition at the root and leaf levels, allowing a faster recovery of the Fe-deficiency symptoms. The aim of this work is to verify whether this recovery involves also the allocation and accumulation of nutrients other than Fe to and within the leaf tissues. Iron-deficient plants treated with Fe-WEHS recovered more quickly the functionality both to uptake nitrate at the root level and to fixate CO2 in the leaves than those supplied with Fe-citrate. Concomitantly, Fe-WEHS-treated plants also accumulated other cationic nutrients faster and at a higher extent. Synchrotron 2D-scanning μ-X-ray fluorescence analyses of the leaves revealed that the recovery promotes a change in the allocation of these nutrients from the vascular system (K, Cu, and Zn) or trichomes (Ca and Mn) to the entire leaf blade. Fe-WEHS treatment efficiently promotes the recovery from Fe-deficiency-induced chlorosis with an enhanced allocation of other nutrients into the leaves and promoting their distribution into the entire leaf blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnolon F, Santi S, Varanini Z, Pinton R (2002) Enzymatic responses of cucumber roots to different levels of Fe supply. Plant Soil 241:35–41

    Article  CAS  Google Scholar 

  • Aguirre E, Leménager D, Bacaicoa E, Fuentes M, Baigorri R, Zamarreño AM, García-Mina JM (2008) The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiol Biochem 47:215–223

    PubMed  Google Scholar 

  • Aiken GR, Thurman EM, Malcolm R (1979) Comparison of XAD macroporous resin for the concentration of fulvic acid from aqueous solution. Anal Chem 51:1799–1803

    Article  CAS  Google Scholar 

  • Alcaraz CF, Martinez-Sánchez F, Sevilla F, Hellin E (1986) Influence of ferredoxin levels on nitrate reductase activity in iron deficient lemon leaves. J Plant Nutr 9:1405–1413

    Article  CAS  Google Scholar 

  • Borlotti A, Vigani G, Zocchi G (2012) Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biol 12:189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  CAS  PubMed  Google Scholar 

  • Broadhurst CL, Tappero R, Maugel T, Erbe E, Sparks D, Chaney R (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314:35–48

    Article  Google Scholar 

  • Buckhout TJ, Yang TJ, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics 10:147

    Article  PubMed Central  PubMed  Google Scholar 

  • Cacco G, Attinà E, Gelsomino A, Sidari M (2000) Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. J Plant Nutr Soil Sci 163:313–320

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VI (1975) Rapid colorimetric determination of nitrate in plant tissues by nitratation of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Cesco S, Römheld V, Varanini Z, Pinton R (2000) Solubilization of iron by water-extractable humic substances. J Plant Nutr Soil Sci 163:285–290

    Article  CAS  Google Scholar 

  • Cesco S, Nikolic M, Römheld V, Varanini Z, Pinton R (2002) Uptake of 59Fe from soluble 59Fe-humate complexes by cucumber and barley plants. Plant Soil 241:121–128

    Article  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soil 48:123–149

    Article  CAS  Google Scholar 

  • Chen Y, Aviad T (1990) Effects of humic substances on plant growth. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop sciences: selected readings. Amer Soc Agron Soil Sci Soc Amer, Madison, pp 161–186

    Google Scholar 

  • Chen Y, Clapp CE, Magen H (2004) Mechanism of plant growth stimulation by humic substances: the role of organo–iron complexes. Soil Sci Plant Nutr 50:1089–1095

    Article  CAS  Google Scholar 

  • Choudhury DAM, Copland MJW (2003) Influence of plant structural complexity on the searching behaviour of the egg parasitoid Anagrus atomus (Linnaeus) (Hymenoptera: ymaridae). Pak J Biol Sci 6:455–460

    Article  Google Scholar 

  • Colombo C, Palumbo G, Sellitto VM, Rizzardo C, Tomasi N, Pinton R, Cesco S (2012) Characteristics of insoluble, high molecular weight Fe-humic substances used as plant Fe sources. Soil Sci Soc Am J 76:1246–1256

    Article  CAS  Google Scholar 

  • Colombo C, Palumbo G, He J-Z, Pinton R, Cesco S (2014) Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments 14:538–548

    Article  CAS  Google Scholar 

  • Crawford NM, Glass AD (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Csog A, Mihucz VG, Tatár E, Fodor F, Virág I, Majdik C, Záray G (2011) Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies. J Plant Physiol 168:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • García-Mina JM, Antolín MC, Sanchez-Diaz M (2004) Metal-humic complexes and plant micronutrient uptake: a study based on different plant species cultivated in diverse soil types. Plant Soil 258:57–68

    Article  Google Scholar 

  • Gerke J (1993) Solubilization of Fe(III) from humic-Fe complexes, humic/Fe-oxide mixtures and from poorly ordered Fe-oxide by organic acids—consequences for P adsorption. J Plant Nutr Soil Sci 156:253–257

    CAS  Google Scholar 

  • Guminski S, Sulej J, Glabiszewski J (1983) Influence of sodium humate of some ions by tomato seedlings. Acta Soc Bot Pol 52:149–164

    Article  CAS  Google Scholar 

  • Iacuzzo F, Gottardi S, Tomasi N, Savoia E, Tommasi R, Cortella G, Terzano R, Pinton R, Dalla Costa L, Cesco S (2011) Corn salad (Valerianella locusta (L.) Laterr.) growth in a water-saving floating system as affected by iron and sulfate availability. J Sci Food Agric 91:344–354

    Article  CAS  PubMed  Google Scholar 

  • Isaure MP, Fraysse A, Deves G, Le Lay P, Fayard B, Susini J, Bourguignon J, Ortega R (2006) Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements. Biochimie 88:1583–1590

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Darrah P, Kochian L (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180:57–66

    Article  CAS  Google Scholar 

  • Lindsay WL, Schwab AP (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5:821–840

    Article  CAS  Google Scholar 

  • Maggioni A, Varanini Z, Nardi S, Pinton R (1987) Action of soil humic matter on plant roots: stimulation of ion uptake and effects on (Mg2+ + K+) ATPase activity. Sci Total Environ 62:355–363

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  CAS  PubMed  Google Scholar 

  • Nikolic M, Cesco S, Römheld V, Varanini Z, Pinton R (2007) Short-term interactions between nitrate and iron nutrition in cucumber. Funct Plant Biol 34:402–408

    Article  CAS  Google Scholar 

  • Nikolic M, Cesco S, Monte R, Tomasi N, Gottardi S, Zamboni A, Pinton R, Varanini Z (2012) Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance. BMC Plant Biol 12:66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinton R, Cesco S, De Nobili M, Santi S, Varanini Z (1997a) Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biol Fertil Soil 26:23–27

    Article  Google Scholar 

  • Pinton R, Cesco S, Santi S, Varanini Z (1997b) Soil humic substances stimulate proton release by intact oat seedling roots. J Plant Nutr 20:857–869

    Article  CAS  Google Scholar 

  • Pinton R, Cesco S, Santi S, Agnolon F, Varanini Z (1999a) Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant Soil 210:145–157

    Article  CAS  Google Scholar 

  • Pinton R, Cesco S, Iacolettig G, Astolfi S, Varanini Z (1999b) Modulation of NO3 uptake by water-extractable humic substances: involvement of root plasma membrane H(+)ATPase. Plant Soil 215:155–161

    Article  CAS  Google Scholar 

  • Rauthan BS, Schnitzer M (1981) Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 63:491–495

    Article  CAS  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Römheld V (1987) Existence of two different strategies for the acquisition of iron in higher plants. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in animal, plants and micro-organisms. VCH Chemie, Weinheim, pp 353–374

    Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarret G, Harada E, Choi Y-E, Isaure M-P, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarret G, Willems G, Isaure MP, Marcus MA, Fakra S, Frérot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P (2009) Zn localization and speciation in Arabidopsis hallerix Arabidopsis lyrataprogenies presenting various Zn accumulation capacities. New Phytol 184:581–595

    Article  CAS  PubMed  Google Scholar 

  • Sarret G, Pilon Smits EAH, Castillo Michel H, Isaure MP, Zhao FJ, Tappero R (2013) Chapter one—use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. Adv Agron 119:1–82

    Article  CAS  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  • Shi JY, Yuan XF, Chen XC, Wu B, Huang YY, Chen YX (2011) Copper uptake and its effect on metal distribution in root growth zones of Commelina communis revealed by SRXRF. Biol Trace Elem Res 141:294–304

    Article  CAS  PubMed  Google Scholar 

  • Sole VA, Papillon E, Cotte M, Walter P, Susini J (2006) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta, Part B 62:63–68

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York, pp 1–496

    Google Scholar 

  • Sudipta R, Minori U, Garrison S (2009) Iron(III) Bioreduction in soil in the presence of added humic substances. Soil Sci Soc Am J 73:65–71

    Article  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  • Terzano R, Al Chami Z, Vekemans B, Janssens K, Miano T, Ruggiero P (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES. J Agric Food Chem 56:3222–3231

    Article  CAS  PubMed  Google Scholar 

  • Terzano R, Alfeld M, Janssens K, Vekemans B, Schoonjans T, Vincze L, Tomasi N, Pinton R, Cesco S (2013) Spatially resolved (semi)quantitative determination of iron (Fe) in plants by means of synchrotron micro X-ray fluorescence. Anal Bioanal Chem 405:3341–3350

    Article  CAS  PubMed  Google Scholar 

  • Tomasi N, Rizzardo C, Monte R, Gottardi S, Jelali N, Terzano R, Vekemans B, De Nobili M, Varanini Z, Pinton R, Cesco S (2009) Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution. Plant Soil 325:25–38

    Article  CAS  Google Scholar 

  • Tomasi N, De Nobili M, Gottardi S, Zanin L, Mimmo T, Varanini Z, Römheld V, Pinton R, Cesco S (2013) Physiological and molecular aspects of Fe acquisition by tomato plants from natural Fe-complexes. Biol Fertil Soil 49:187–200

    Article  CAS  Google Scholar 

  • van Hees PAW, Lundstrom US (2000) Equilibrium models of aluminium and iron complexation with different organic acids in soil solution. Geoderma 94:201–221

    Article  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Varanini Z, Pinton R (1995) Humic substances and plant nutrition. In: Lüttge U (ed) Progress in Botany, vol 56. Springer-Verlag, Berlin, pp 97–117

    Chapter  Google Scholar 

  • Varanini Z, Pinton R (2001) Direct versus indirect effects of soil humic substances on plant growth and nutrition. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rizosphere. Marcel Dekker, Basel, pp 141–158

    Google Scholar 

  • Varanini Z, Pinton R, De Biasi MG, Astolfi S, Maggioni A (1993) Low molecular weight humic substances stimulate H+-ATPase activity of plasma membrane vesicles isolated from oat (Avena sativa L.) roots. Plant Soil 153:61–69

    Article  CAS  Google Scholar 

  • Venkat Raju K, Marschner H (1972) Regulation of iron uptake from relatively insoluble iron compounds by sunflower plants. Z Pflanzenernähr Bodenkd 132:177–190

    Article  Google Scholar 

  • von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv yellow-stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106:71–77

    Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV (1993) Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe (III)-chelate reductase perform a general role in regulating cation uptake? Planta 190:555–561

    Article  CAS  Google Scholar 

  • Wulandari C, Muraki S, Hisamura A, Ono H, Honda K, Kashima T, Subandiyah S, Masaoka Y (2014) Effect of Iron deficiency on root ferric chelate reductase, proton extrusion, biomass production and mineral absorption of citrus root stock orange jasmine (Murraya exotica L.). J Plant Nutr 37:1

    Article  Google Scholar 

  • Xiong H, Kakei Y, Kobayashi T, Guo X, Nakazono M, Takahashi H, Nakanishi H, Shen H, Zhang F, Nishizawa NK, Zuo Y (2013) Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant Cell Environ 36:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S (2012) Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 13:101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zancan S, Cesco S, Ghisi R (2006) Effect of UV-B radiation on iron content and distribution in maize plants. Environ Exp Bot 55:266–272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by grants from Italian MIUR (FIRB-Programma “Futuro in Ricerca”) and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). The authors acknowledge support from the Hercules fund, Brussels (grant A11/0387), and from FWO (Brussels) via grant G.0C12.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Cesco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomasi, N., Mimmo, T., Terzano, R. et al. Nutrient accumulation in leaves of Fe-deficient cucumber plants treated with natural Fe complexes. Biol Fertil Soils 50, 973–982 (2014). https://doi.org/10.1007/s00374-014-0919-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0919-6

Keywords

Navigation