Skip to main content
Log in

Possibilities of energy-resolved X-ray radiography for the investigation of paintings

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

X-ray radiographic images of paintings often show little or no contrast. In order to increase the contrast in radiographic images we measured the X-ray spectrum of a low power X-ray tube, after passing through the painting, with a high energy-resolution SDD detector. To obtain images, the detector is collimated with a 400 μm diameter pinhole and the painting was moved through the beam in the x and y-direction using a dwell time of a few seconds per pixel. The data obtained consists of a data cube of, typically, 200 × 200 pixels and a 512-channel X-ray spectrum for each pixel, spanning the energy range from 0 to 40 keV. Having the absorbance spectrum available for each pixel, we are able, a posteriori, to produce images by edge subtraction for any given element. In this way high contrast, element-specific, images can be obtained. Because of the high energy-resolution a much simpler edge subtraction algorithm can be applied. We also used principal-component imaging to obtain, in a more automated way, images with high contrast. Some of these images can easily be attributed to specific elements. It turns out that preprocessing of the spectral data is crucial for the success of the multivariate image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jacobson B (1953) Dichromatic absorption radiography-dichromography. Acta Radiol 39:437–452

    Article  CAS  Google Scholar 

  2. Baldelli P, Bonizzoni L, Gambaccini M, Gargano M, Ludwig L, Milazzo M, Pasetti L, Petrucci F, Prino F, Ramello L, Scotti M (2006) Il Nuovo Cimento 29:663–672

    Google Scholar 

  3. Sarnelli A, Taibi A, Tuffanelli A, Baldazzi G, Bollini D, Cabal Rodriguez AE, Gombia M, Prino F, Ramello L, Tomassi E, Gambaccini M (2004) K-edge digital subtraction imaging based on a dichromatic and compact X-ray source. Phys Med Biol 49:3291–3305

    Article  CAS  Google Scholar 

  4. Albertin F, Franconieri A, Gambaccini M, Moro D, Petrucci F, Chiozzi S (2009) A quasi-monochromatic X-rays source for art painting pigments investigation. Appl Phys A 96:503–510

    Article  CAS  Google Scholar 

  5. Dix WR, Kupper W, Dill T, Hamm CW, Job H, Lohmann M, Reime B, Ventura R (2003) Comparison of intravenous coronary angiography using synchrotron radiation with selective coronary angiography. J Synchrotron Radiat 10:219–227

    Article  Google Scholar 

  6. Schltke E, Fiedler S, Kelly M, Griebel R, Juurlink B, LeDuc G, Estve F, Le Bas JF, Renier M, Nemoz C, Meguro K (2005) The potencial for neurovascular intravenous angiography using k-edge digital subtraction angiography. Nucl Instr and Meth Phys Res A 548:84–87

    Article  Google Scholar 

  7. Krug K, Dik J, Den Leeuw M, Whitson A, Tortora J, Coan P, Nemoz C, Bravin A (2006) Visualization of pigment distributions in paintings using synchrotron K-edge imaging. Appl Phys A 83:247–251

    Article  CAS  Google Scholar 

  8. Dik J, Janssens K, Van der Snickt G, van der Loeff L, Rickers K, Cotte M (2008) Visualization of a Lost Painting by Vincent van Gogh Using Synchrotron Radiation Based X-ray Fluorescence Elemental Mapping. Anal Chem 80:6436–6442

    Article  CAS  Google Scholar 

  9. Schalm O, Cabal A, Van Espen P, Laquière N, Storme P (2011) J Anal At Spectrom 26:1068–1077

    Article  CAS  Google Scholar 

  10. Lehmann LA, Alvarez RE, Macovski A, Brody WR (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8:659–667

    Article  CAS  Google Scholar 

  11. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21(5):733–744

    Article  CAS  Google Scholar 

  12. Van Grieken R, Markovic A (2002) Handbook of X-ray spectrometry. Marcel Dekker, New York

    Google Scholar 

  13. Geladi P, Grahn H (1996) Multivariate Image Processing. J. Wiley & Sons Ltd, Chichester

    Google Scholar 

  14. Savitzky A, Golay MJE (1964) Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  15. Scharf O, Ihle S, Ordavo I, Arkadiev V, Bjeoumikhov A, Bjeoumikhova S, Buzanich G, Gubzhokov R, Günther A, Hartmann R, Kühbacher M, Lang M, Langhoff N, Liebel A, Radtke M, Reinholz U, Riesemeier H, Soltau H, Strüder L, Thünemann AF, Wedell R (2011) Compact pnCCD-Based X-ray Camera with High Spatial and Energy Resolution: A Color X-ray Camera. Anal Chem 83(7):2532–2538

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. M. Van Espen.

Additional information

Published in the special issue Analytical Techniques in Art, Archaeology and Conservation Science with guest editor Oliver Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabal Rodríguez, A.E., Leyva Pernía, D., Schalm, O. et al. Possibilities of energy-resolved X-ray radiography for the investigation of paintings. Anal Bioanal Chem 402, 1471–1480 (2012). https://doi.org/10.1007/s00216-011-5230-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5230-x

Keywords

Navigation