Skip to main content

Advertisement

Log in

Relationship between the Size of Magnetic Nanoparticles and Efficiency of MRT Imaging of Cerebral Glioma in Rats

  • BIOTECHNOLOGIES
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

BSA-coated Fe3O4 nanoparticles with different hydrodynamic diameters (36±4 and 85±10 nm) were synthesized, zeta potential and T2 relaxivity were determined, and their morphology was studied by transmission electron microscopy. Studies on rats with experimental glioma C6 showed that smaller nanoparticles more effectively accumulated in the tumor and circulated longer in brain vessels. Optimization of the hydrodynamic diameter improves the efficiency of MRT contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Abakumov, N. V. Nukolova, M. Sokolsky-Papkov, S. A. Shein, T. O. Sandalova, H. Vishwasrao, N. F. Grinenko, I. L. Gubsky, A. M. Abakumov, A. V. Kabanov, and V. P. Chekhonin, VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine, 11, No. 4, 825-833 (2015).

    CAS  PubMed  Google Scholar 

  2. M. A. Abakumov, S. A. Shein, H. Vishvasrao, N. V. Nukolova, M. Sokol’ski-Papkov, T. O. Sandalova, I. L. Gubskii, N. F. Grinenko, A. V. Kabanov, and V. P. Chekhonin, Visualization of experimental glioma C6 by MRI with magnetic nanoparticles conjugated with monoclonal antibodies to vascular endothelial growth factor. Bull. Exp. Biol. Med., 154, No. 2, 274-277 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. A. Albanese, P. S. Tang, and C. W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 14, 1-16 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. R. Bachmann, R. Conrad, B. Kreft, O. Luzar, W. Block, S. Flacke, D. Pauleit, F. Traber, J. Gieseke, K. Saebo, and H. Schild, Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J. Magn. Reson. Imaging, 16, No. 2, 190-195 (2002).

    Article  PubMed  Google Scholar 

  5. V. P. Chekhonin, V. P. Baklaushev, G. M. Yusubalieva, A. E. Belorusova, M. V. Gulyaev, E. B. Tsitrin, N. F. Grinenko, O. I. Gurina, and Y. A. Pirogov, Targeted delivery of liposomal nanocontainers to the peritumoral zone of glioma by means of monoclonal antibodies against GFAP and the extracellular loop of Cx43. Nanomedicine, 8, No. 1, 63-70 (2012).

    CAS  PubMed  Google Scholar 

  6. Z. Karimi, L. Karimi, and H. Shokrollahi, Nano-magnetic particles used in biomedicine: core and coating materials. Mater. Sci. Eng. C Mater. Biol. Appl., 33, No. 5, 2465-2475 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. M. M. Lin, K. Kim do, A. J. El Haj, and J. Dobson, Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans. Nanobioscience, 7, No. 4, 298-305 (2008).

  8. K. Lind, M. Kresse, N. P. Debus, and R. H. Muller, A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: comparison of physicochemical properties and the in vivo behaviour. J. Drug. Target, 10, No. 3, 221-230 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. M. Longmire, P. L. Choyke, and H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 3, No. 5, 703-717 (2008).

    Article  CAS  Google Scholar 

  10. K. Ohno, C. Mori, T. Akashi, S. Yoshida, Y. Tago, Y. Tsujii, and Y. Tabata, Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization. Biomacromolecules, 14, No. 10, 3453-3462 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. D. Patel, A. Kell, B. Simard, B. Xiang, H. Y. Lin, and G. Tian, The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials, 32, No. 4, 1167-1176 (2013).

    Article  Google Scholar 

  12. B. W. Tse, G. J. Cowin, C. Soekmadji, L. Jovanovic, R. S. Vasireddy, M. T. Ling, A. Khatri, T. Liu, B. Thierry, and P. J. Russell, PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine (Lond.), 10, No. 3, 375-386 (2015).

    Article  CAS  Google Scholar 

  13. Y. X. Wang, S. M. Hussain, and G. P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol., 11, No. 11, 2319-2331 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Semkina.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 161, No. 2, pp. 256-260, February, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semkina, A.S., Abakumov, M.A., Abakumov, A.M. et al. Relationship between the Size of Magnetic Nanoparticles and Efficiency of MRT Imaging of Cerebral Glioma in Rats. Bull Exp Biol Med 161, 292–295 (2016). https://doi.org/10.1007/s10517-016-3398-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-016-3398-y

Key Words

Navigation