Skip to main content
Log in

SF6 Degradation in a γ-Al2O3 Packed DBD System: Effects of Hydration, Reactive Gases and Plasma-Induced Surface Charges

  • Original paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a γ-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O2 can occupy the active sites (AlIII site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Christophorou LG, Olthoff JK, Van Brunt RJ (1997) Sulfur hexafluoride and the electric power industry [J]. IEEE Electr Insul Mag 13(5):20–24

    Article  Google Scholar 

  2. Dervos CT, Vassiliou P (2000) Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation [J]. J Air Waste Manag Assoc 50(1):137–141

    Article  CAS  PubMed  Google Scholar 

  3. Fang X, Hu X, Janssens-Maenhout G et al (2013) Sulfur hexafluoride (SF6) emission estimates for China: an inventory for 1990–2010 and a projection to 2020 [J]. Environ Sci Technol 47(8):3848–3855

    Article  CAS  PubMed  Google Scholar 

  4. Kieffel Y, Irwin T, Ponchon P et al (2016) Green gas to replace SF6 in electrical grids [J]. IEEE Power Energ Mag 14(2):32–39

    Article  Google Scholar 

  5. Reilly J, Prinn R, Harnisch J et al (1999) Multi-gas assessment of the Kyoto protocol [J]. Nature 401(6753):549–555

    Article  CAS  Google Scholar 

  6. Zhou S, Teng F, Tong Q (2018) Mitigating Sulfur Hexafluoride (SF6) emission from electrical equipment in China [J]. Sustainability 10(7):2402

    Article  CAS  Google Scholar 

  7. Mead I. International energy outlook 2017[J]. US Energy Information Administration, 2017.

  8. Nielsen OK, Plejdrup MS, Winther M, Report DNI et al (2020) Emission Inventories 1990–2018-Submitted under the United Nations framework convention on climate change and the Kyoto protocol [J]. Scientific Report from DCE 2020:900

    Google Scholar 

  9. Tsai CH, Shao JM (2008) Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment[J]. J Hazard Mater 157(1):201–206

    Article  CAS  PubMed  Google Scholar 

  10. Kashiwagi D, Takai A, Takubo T et al (2009) Catalytic activity of rare earth phosphates for SF6 decomposition and promotion effects of rare earths added into AlPO4[J]. J Colloid Interface Sci 332(1):136–144

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Zhou JZ, Liu Q et al (2013) Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge [J]. Environ Sci Technol 47(12):6493–6499

    Article  CAS  PubMed  Google Scholar 

  12. Holze P, Horn B, Limberg C et al (2014) The activation of sulfur hexafluoride at highly reduced low-coordinate nickel dinitrogen complexes [J]. Angew Chem Int Ed 53(10):2750–2753

    Article  CAS  Google Scholar 

  13. Song X, Liu X, Ye Z et al (2009) Photodegradation of SF6 on polyisoprene surface: Implication on elimination of toxic byproducts [J]. J Hazard Mater 168(1):493–500

    Article  CAS  PubMed  Google Scholar 

  14. Govindan M, Gopal RA, Moon IS (2020) Electrochemical sequential reduction and oxidation facilitates the continual ambient temperature degradation of SF6 to nontoxic gaseous compounds [J]. Chem Eng J 382:122881

    Article  CAS  Google Scholar 

  15. Zhang X, Xiao H, Tang J et al (2017) Recent advances in decomposition of the most potent greenhouse gas SF6[J]. Crit Rev Environ Sci Technol 47(18):1763–1782

    Article  CAS  Google Scholar 

  16. Lee H, Chang M, Wu K (2004) Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas [J]. J Air Waste Manag Assoc 54(8):960–970

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Xiao H, Hu X et al (2018) Effects of reduced electric field on sulfur hexafluoride removal for a double dielectric barrier discharge reactor [J]. IEEE Trans Plasma Sci 46(3):563–570

    Article  CAS  Google Scholar 

  18. Radoiu M, Hussain S (2009) Microwave plasma removal of sulphur hexafluoride [J]. J Hazard Mater 164(1):39–45

    Article  CAS  PubMed  Google Scholar 

  19. Kim J, Cho C, Shin D et al (2015) Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor [J]. J Hazardous Mater 294:41–46

    Article  CAS  Google Scholar 

  20. Shih M, Lee W, Tsai C et al (2002) Decomposition of SF6 in an RF plasma environment [J]. J Air Waste Manag Assoc 52(11):1274–1280

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Cui Z, Li Y et al (2018) Abatement of SF6 in the presence of NH3 by dielectric barrier discharge plasma[J]. J Hazard Mater 360:341–348

    Article  CAS  PubMed  Google Scholar 

  22. Cui Z, Zhang X, Yuan T et al (2019) Plasma-assisted abatement of SF6 in a dielectric barrier discharge reactor: investigation of the effect of packing materials[J]. J Phys D Appl Phys 53(2):025205

    Article  Google Scholar 

  23. Cui Z, Zhou C, Jafarzadeh A, et al. (2022) SF6 catalytic degradation in a γ-Al2O3 packed bed plasma system: a combined experimental and theoretical study [J]. High Voltage. 7(6):1048–1058

  24. Bogaerts A, Tu X, Whitehead J et al (2020) The 2020 plasma catalysis roadmap [J]. J Phys D Appl Phys 53(44):443001

    Article  CAS  Google Scholar 

  25. Peri JB (1965) Infrared and gravimetric study of the surface hydration of γ-alumina[J]. J Phys Chem 69(1):211–219

    Article  CAS  Google Scholar 

  26. Lefevre G, Duc M, Lepeut P et al (2002) Hydration of γ-alumina in water and its effects on surface reactivity[J]. Langmuir 18(20):7530–7537

    Article  CAS  Google Scholar 

  27. Fernandez EM, Eglitis RI, Borstel G et al (2007) Ab initio calculations of H2O and O2 adsorption on Al2O3 substrates[J]. Comput Mater Sci 39(3):587–592

    Article  CAS  Google Scholar 

  28. Butterworth T, Elder R, Allen R (2016) Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor[J]. Chem Eng J 293:55–67

    Article  CAS  Google Scholar 

  29. Wang X, Gao Y, Zhang S et al (2019) Nanosecond pulsed plasma assisted dry reforming of CH4: the effect of plasma operating parameters[J]. Appl Energy 243:132–144

    Article  CAS  Google Scholar 

  30. Jiang N, Guo L, Qiu C et al (2018) Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes[J]. Chem Eng J 350:12–19

    Article  CAS  Google Scholar 

  31. Neyts EC, Ostrikov K, Sunkara MK et al (2015) Plasma catalysis: synergistic effects at the nanoscale[J]. Chem Rev 115(24):13408–13446

    Article  CAS  PubMed  Google Scholar 

  32. Yi Y, Wang X, Jafarzadeh A et al (2021) Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of HCN and H2 at reduced temperature[J]. ACS Catal 11(3):1765–1773

    Article  CAS  Google Scholar 

  33. Bal KM, Huygh S, Bogaerts A et al (2018) Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation[J]. Plasma Sourc Sci Technol 27(2):024001

    Article  Google Scholar 

  34. Shirazi M, Neyts EC, Bogaerts A (2017) DFT study of Ni-catalyzed plasma dry reforming of methane[J]. Appl Catal B 205:605–614

    Article  CAS  Google Scholar 

  35. Hutter J, Iannuzzi M, Schiffmann F et al (2014) cp2k: atomistic simulations of condensed matter systems [J]. Wiley Interdiscipl Rev: Comput Mol Sci 4(1):15–25

    CAS  Google Scholar 

  36. VandeVondele J, Krack M, Mohamed F et al (2005) Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J]. Comput Phys Commun 167(2):103–128

    Article  CAS  Google Scholar 

  37. VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases [J]. J Chem Phys 127(11):114105

    Article  PubMed  Google Scholar 

  38. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials [J]. Phys Rev B 54(3):1703

    Article  CAS  Google Scholar 

  39. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple [J]. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  40. Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. J Chem Phys 132(15):154104

    Article  PubMed  Google Scholar 

  41. Head J, Zerner M (1985) A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries [J]. Chem Phys Lett 122(3):264–270

    Article  CAS  Google Scholar 

  42. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J]. J Chem Phys 113(22):9901–9904

    Article  CAS  Google Scholar 

  43. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density [J]. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  44. Digne M, Sautet P, Raybaud P et al (2004) Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces [J]. J Catal 226(1):54–68

    Article  CAS  Google Scholar 

  45. Wischert R, Laurent P, Copéret C et al (2012) γ-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of “defect” sites [J]. J Am Chem Soc 134(35):14430–14449

    Article  CAS  PubMed  Google Scholar 

  46. Martyna G, Tuckerman M (1999) A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters [J]. J Chem Phys 110(6):2810–2821

    Article  CAS  Google Scholar 

  47. Jafarzadeh A, Bal K, Bogaerts A et al (2020) Activation of CO2 on copper surfaces: the synergy between electric field, surface morphology, and excess electrons [J]. J Phys Chem C 124(12):6747–6755

    Article  CAS  Google Scholar 

  48. Peeters FJJ, Van de Sanden MCM (2014) The influence of partial surface discharging on the electrical characterization of DBDs[J]. Plasma Sourc Sci Technol 24(1):015016

    Article  Google Scholar 

  49. Butterworth T, Allen RWK (2017) Plasma-catalyst interaction studied in a single bead DBD reactor: dielectric constant effect on plasma dynamics[J]. Plasma Sourc Sci Technol 26(6):065008

    Article  Google Scholar 

  50. Wang Q, Zhou X, Dai D et al (2021) Nonlinear feature in the spatial uniformity of an atmospheric helium dielectric barrier discharge with the inter-dielectric gap width enlarged [J]. Plasma Sour Sci Technol 30(5):56

    Article  Google Scholar 

  51. Tsai WT (2007) The decomposition products of sulfur hexafluoride (SF6): reviews of environmental and health risk analysis[J]. J Fluorine Chem 128(11):1345–1352

    Article  CAS  Google Scholar 

  52. Zhang X, Cui Z, Li Y et al (2018) Study on degradation of SF6 in the presence of H2O and O2 using dielectric barrier discharge[J]. IEEE Access 6:72748–72756

    Article  Google Scholar 

  53. Zhang X, Yuan T, Cui Zhaolun et al (2020) Plasma-assisted abatement of SF6 in a packed bed plasma reactor: understanding the effect of gas composition[J]. Plasma Sci Technol 22(5):055502

    Article  Google Scholar 

  54. Tian Y, Zhang X, Tang B et al (2019) SF6 abatement in a packed bed plasma reactor: study towards the effect of O2 concentration[J]. RSC Adv 9(60):34827–34836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao H, Zhang X, Hu X et al (2017) Experimental and simulation analysis on by-products of treatment of SF6 using dielectric barrier discharge[J]. IEEE Trans Dielectr Electr Insul 24(3):1617–1624

    Article  CAS  Google Scholar 

  56. Wang W, Kim H, Van Laer K et al (2018) Streamer propagation in a packed bed plasma reactor for plasma catalysis applications [J]. Chem Eng J 334:2467–2479

    Article  CAS  Google Scholar 

  57. Deshlahra P, Wolf EE, Schneider WF (2009) A periodic density functional theory analysis of CO chemisorption on Pt (111) in the presence of uniform electric fields[J]. J Phys Chem A 113(16):4125–4133

    Article  CAS  PubMed  Google Scholar 

  58. Zhang QZ, Bogaerts A (2018) Propagation of a plasma streamer in catalyst pores[J]. Plasma Sources Sci Technol 27(3):035009

    Article  Google Scholar 

  59. Cui Z, Meng S, Yi Y et al (2022) Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism[J]. ACS Catal 12(2):1326–1337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation—Flanders (FWO) and the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanpeng Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4932 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhou, C., Jafarzadeh, A. et al. SF6 Degradation in a γ-Al2O3 Packed DBD System: Effects of Hydration, Reactive Gases and Plasma-Induced Surface Charges. Plasma Chem Plasma Process 43, 635–656 (2023). https://doi.org/10.1007/s11090-023-10320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10320-3

Keywords

Navigation