Skip to main content
Log in

Abstract.

We propose a scheme to generate the entangled state of two \(\Lambda \)-type three-level atoms trapped in a cavity. The atoms are initially prepared in their excited state and the cavity in vacuum state. Each atom has two possibilities to deexcite to one of the ground states. If two different polarized photons are detected subsequently, it is sure that both atoms are in different ground states. But which atom is in which ground state cannot be determined, the atoms are thus prepared in a superposition of two ground states, i.e., an entangled state. In comparison with the proposal of Hong and Lee [Phys. Rev. Lett. 89, 237901 (2002)], the requirement of a single polarized photon source can be avoided in our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review see, e.g., C.H. Bennett, D.P. DiVincenzo, Nature 404, 247(2000)

    Article  Google Scholar 

  2. J.I. Cirac, P. Zoller, Phys. Rev. A 50, R2799 (1994)

  3. M.B. Plenio, S.F. Huelga, A. Beige, P.L. Knight, Phys. Rev. A 59, 2468 (1999)

    Article  Google Scholar 

  4. A.S. Sørensen, K. Mølmer, Phys. Rev. A 66, 022314 (2000)

    Article  Google Scholar 

  5. S.-B. Zheng, G.-C. Guo, Phys. Rev. Lett. 85, 2393 (2000)

    Google Scholar 

  6. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  Google Scholar 

  7. E. Solano, G.S. Agarwal, H. Walther, Phys. Rev. Lett. 90, 027903 (2003)

    Article  Google Scholar 

  8. J. Hong, H.-W. Lee, Phys. Rev. Lett. 89, 237901 (2002)

    Article  Google Scholar 

  9. A.S. Sørensen, K. Mølmer, Phys. Rev. Lett. 90, 127903 (2003)

    Article  Google Scholar 

  10. J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997); S. van Enk, J. Cirac, P. Zoller, Phys. Rev. Lett. 78, 4293 (1997)

    Article  Google Scholar 

  11. S. Bose et al. , Phys. Rev. Lett. 83, 5158 (1999)

    Article  Google Scholar 

  12. S. Lloyd, M.S. Shahriar, J.H. Shapiro, P.R. Hemmer, Phys. Rev. Lett. 87, 167903 (2001)

    Article  Google Scholar 

  13. A. Sørensen, K. Mølmer, Phys. Rev. A 58, 2745 (1998)

    Article  Google Scholar 

  14. A.S. Parkins, H.J. Kimble, Phys. Rev. Lett. 61, 052104 (2000)

    Article  Google Scholar 

  15. C. Di Fidio, W Vogel, J. Opt. B: Quant. Semiclass. Opt. 5, 105 (2003)

    Article  Google Scholar 

  16. X.-L. Feng, Z.-M. Zhang, X.-D. Li, S.-Q. Gong, Z.-Z. Xu, Phys. Rev. Lett. 90, 217902 (2003)

    Article  Google Scholar 

  17. L.-M. Duan H.J. Kimble, Phys. Rev. Lett. 90, 253601 (2003)

    Article  Google Scholar 

  18. D.E. Browne, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 91, 067901 (2003)

    Article  Google Scholar 

  19. C. Simon et al. , Phys. Rev. Lett. 91, 110405 (2003)

    Article  Google Scholar 

  20. S. Clark, A. Peng, M. Gu, S. Parkins, Phys. Rev. Lett. 91, 177901 (2003)

    Article  Google Scholar 

  21. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 79, 1 (1997); B.-G. Englert, M. Lofler, O. Benson, B. Varcoe, M. Weidinger, H. Walther, Fortschr. Phys. 46, 897 (1998); A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.M. Raimond, S. Haroche, Science 288, 2024 (2000); S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 87, 037902 (2001)

    Article  Google Scholar 

  22. W. Lange, K.J. Kimble, Phys. Rev. A 61, 063817 (2000)

    Article  Google Scholar 

  23. C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Phys. Rev. Lett. 83, 2722 (1999); C. Kurtsiefer et al. , Phys. Rev. Lett. 85, 290 (2000); J. Kim, O. Benson, H. Kan, Y. Yamamoto, Nature 397, 500 (1999)

    Article  Google Scholar 

  24. A. Barchielli, V. Belavkin, J. Phys. A 24, 1495 (1991); G. Hegerfeldt, D. Sondermann, Quant. Semiclass. Opt. 8, 121 (1996)

    Article  MathSciNet  Google Scholar 

  25. H. J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993)

    Article  Google Scholar 

  26. M.A. Can et al. , Phys. Rev. A, 68, 022305 (2003); A. Sørensen, K. Mølmer, Phys. Rev. Lett. 91, 097905 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-L. Feng.

Additional information

Received: 20 February 2004, Published online: 6 July 2004

PACS:

03.67.Mn Entanglement production, characterization and manipulation - 42.50.Ct Quantum description of interaction of light and matter; related experiments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, ZL., Chen, ZY., Zhang, JT. et al. Scheme for the generation of entangled atomic state in cavity QED. Eur. Phys. J. D 30, 275–278 (2004). https://doi.org/10.1140/epjd/e2004-00086-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00086-2

Keywords

Navigation