Comptes Rendus
Electron microscopy / Microscopie électronique
Seeing and measuring in 3D with electrons
[Voir et mesurer dans l'espace 3D avec des électrons]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 140-150.

L'évolution récente des MET permet d'explorer les nanostructures à l'échelle de l'atome. Cependant, les images obtenues ne sont que des projections bidimensionnelles d'objets 3D. La tomographie électronique permet de pallier cette limitation et se concentre de plus en plus sur les mesures quantitatives. De plus, la résolution atomique en 3D représentait depuis longtemps le but ultime en tomographie. Il est donc nécessaire d'optimiser l'acquisition des données, les techniques de reconstruction 3D ainsi que les méthodes de quantification. Nous allons passer en revue différentes méthodologies et exemples. Nous discuterons ensuite des perspectives et des nouveaux défis à relever dans ce domaine.

Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.

Publié le :
DOI : 10.1016/j.crhy.2013.09.015
Keywords: Electron tomography, Atomic resolution, Three-dimensional reconstruction, Nanostructures
Mot clés : Tomographie électronique, Résolution atomique, Reconstruction en trois dimensions, Nanostructures
Sara Bals 1 ; Bart Goris 1 ; Thomas Altantzis 1 ; Hamed Heidari 1 ; Sandra Van Aert 1 ; Gustaaf Van Tendeloo 1

1 EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
@article{CRPHYS_2014__15_2-3_140_0,
     author = {Sara Bals and Bart Goris and Thomas Altantzis and Hamed Heidari and Sandra Van Aert and Gustaaf Van Tendeloo},
     title = {Seeing and measuring in {3D} with electrons},
     journal = {Comptes Rendus. Physique},
     pages = {140--150},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2013.09.015},
     language = {en},
}
TY  - JOUR
AU  - Sara Bals
AU  - Bart Goris
AU  - Thomas Altantzis
AU  - Hamed Heidari
AU  - Sandra Van Aert
AU  - Gustaaf Van Tendeloo
TI  - Seeing and measuring in 3D with electrons
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 140
EP  - 150
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.09.015
LA  - en
ID  - CRPHYS_2014__15_2-3_140_0
ER  - 
%0 Journal Article
%A Sara Bals
%A Bart Goris
%A Thomas Altantzis
%A Hamed Heidari
%A Sandra Van Aert
%A Gustaaf Van Tendeloo
%T Seeing and measuring in 3D with electrons
%J Comptes Rendus. Physique
%D 2014
%P 140-150
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2013.09.015
%G en
%F CRPHYS_2014__15_2-3_140_0
Sara Bals; Bart Goris; Thomas Altantzis; Hamed Heidari; Sandra Van Aert; Gustaaf Van Tendeloo. Seeing and measuring in 3D with electrons. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 140-150. doi : 10.1016/j.crhy.2013.09.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.015/

[1] D.J. Derosier; A. Klug Reconstruction of 3-dimensional structures from electron micrographs, Nature, Volume 217 (1968), pp. 130-134

[2] W. Hoppe; R. Langer; G. Knesch; C. Poppe Protein crystal structure analysis with electron rays, Naturwissenschaften, Volume 55 (1968), pp. 333-336

[3] A. Leis; B. Rockel; L. Andrees; W. Baumeister Visualizing cells at the nanoscale, Trends Biochem. Sci., Volume 34 (2009), pp. 60-70

[4] K.B. Lu; E. Sourty; R. Guerra; G. Bar; J. Loos Critical comparison of volume data obtained by different electron tomography techniques, Macromolecules, Volume 43 (2010), pp. 1444-1448

[5] P.W. Hawkes The electron microscope as a structure projector (J. Frank, ed.), Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope, Plenum Press, New York, 1992

[6] R.J. Spontak; M.C. Williams; D.A. Agard 3-Dimensional study of cylindrical morphology in a styrene butadiene styrene block copolymer, Polymer, Volume 29 (1988), pp. 387-395

[7] A.J. Koster; U. Ziese; A.J. Verkleij; A.H. Janssen; K.P. de Jong Three-dimensional transmission electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science, J. Phys. Chem. B, Volume 104 (2000), pp. 9368-9370

[8] P.A. Midgley; M. Weyland 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography, Ultramicroscopy, Volume 96 (2003), pp. 413-431

[9] M. Weyland; T.J.V. Yates; R.E. Dunin-Borkowski; L. Laffont; P.A. Midgley Nanoscale analysis of three-dimensional structures by electron tomography, Scr. Mater., Volume 55 (2006), pp. 29-33

[10] T.J.V. Yates; M. Weyland; L. Laffont; D. Zhi; R.E. Dunin-Borkowski; P.A. Midgley 3D analysis of semiconductor structures using STEM tomography, Microscopy of Semiconducting Materials 2003, 2003, pp. 541-544

[11] D. Wolf; A. Lubk; H. Lichte; H. Friedrich Towards automated electron holographic tomography for 3D mapping of electrostatic potentials, Ultramicroscopy, Volume 110 (2010), pp. 390-399

[12] M. Bar Sadan; L. Houben; S.G. Wolf; A. Enyashin; G. Seifert; R. Tenne; K. Urban Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures, Nano Lett., Volume 8 (2008), pp. 891-896

[13] Y. Li; H. Tan; X.Y. Yang; B. Goris; J. Verbeeck; S. Bals; P. Colson; R. Cloots; G. Van Tendeloo; B.L. Su Well shaped MnO nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties, Small, Volume 7 (2011), pp. 475-483

[14] B. Goris; S. Bals; W. Van den Broek; J. Verbeeck; G. Van Tendeloo Exploring different inelastic projection mechanisms for electron tomography, Ultramicroscopy, Volume 111 (2011), pp. 1262-1267

[15] G. Mobus; R.C. Doole; B.J. Inkson Spectroscopic electron tomography, Ultramicroscopy, Volume 96 (2003), pp. 433-451

[16] M.H. Gass; K.K.K. Koziol; A.H. Windle; P.A. Midgley Four-dimensional spectral tomography of carbonaceous nanocomposites, Nano Lett., Volume 6 (2006), pp. 376-379

[17] S. Bals; G. Van Tendeloo; C. Kisielowski A new approach for electron tomography: Annular dark-field transmission electron microscopy, Adv. Mater., Volume 18 (2006), pp. 892-895

[18] R.A. Crowther; D.J. Derosier; A. Klug Reconstruction of 3 dimensional structure from projections and its application to electron microscopy, Proc. R. Soc. Lond., Ser. A, Volume 317 (1970), pp. 319-340

[19] P. Gilbert Iterative methods for 3-dimensional reconstruction of an object from projections, J. Theor. Biol., Volume 36 (1972), pp. 105-117

[20] I. Arslan; J.R. Tong; P.A. Midgley Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials, Ultramicroscopy, Volume 106 (2006), pp. 994-1000

[21] J. Tong; I. Arslan; P. Midgley A novel dual-axis iterative algorithm for electron tomography, J. Struct. Biol., Volume 153 (2006), pp. 55-63

[22] N. Kawase; M. Kato; H. Nishioka; H. Jinnai Transmission electron microtomography without the “missing wedge” for quantitative structural analysis, Ultramicroscopy, Volume 107 (2007), pp. 8-15

[23] E. Biermans; L. Molina; K.J. Batenburg; S. Bals; G. Van Tendeloo Measuring porosity at the nanoscale by quantitative electron tomography, Nano Lett., Volume 10 (2010), pp. 5014-5019

[24] X.X. Ke; S. Bals; D. Cott; T. Hantschel; H. Bender; G. Van Tendeloo Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts, Microsc. Microanal., Volume 16 (2010), pp. 210-217

[25] L. Molina; H.Y. Tan; E. Biermans; K.J. Batenburg; J. Verbeeck; S. Bals; G. Van Tendeloo Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors, Supercond. Sci. Technol., Volume 24 (2011)

[26] K. Jarausch; D.N. Leonard Three-dimensional electron microscopy of individual nanoparticles, J. Electron Microsc., Volume 58 (2009), pp. 175-183

[27] H. Jinnai; Y. Nishikawa; R.J. Spontak; S.D. Smith; D.A. Agard; T. Hashimoto Direct measurement of interfacial curvature distributions in a bicontinuous block copolymer morphology, Phys. Rev. Lett., Volume 84 (2000), pp. 518-521

[28] Y. Ikeda; A. Katoh; J. Shimanuki; S. Kohjiya Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy, Macromol. Rapid Commun., Volume 25 (2004), pp. 1186-1190

[29] L. Laffont; M. Weyland; R. Raja; J.M. Thomas; P.A. Midgley Electron tomography of heterogeneous catalysts, Inst. Phys. Conf. Ser. (2004), pp. 459-462

[30] L. Houben; M. Bar Sadan Refinement procedure for the image alignment in high-resolution electron tomography, Ultramicroscopy, Volume 111 (2011), pp. 1512-1520

[31] W. Van den Broek; A. Rosenauer; B. Goris; G. Martinez; S. Bals; S. Van Aert; D. Van Dyck Correction of non-linear thickness effects in HAADF STEM electron tomography, Ultramicroscopy, Volume 116 (2012), pp. 8-12

[32] T. Altantzis; B. Goris; A. Sánchez-Iglesias; M. Grzelczak; L.M. Liz-Marzán; S. Bals Quantitative structure determination of large three-dimensional nanoparticle assemblies, Part. Part. Syst. Charact., Volume 30 (2013), pp. 84-88

[33] W. van Aarle; K.J. Batenburg; J. Sijbers Optimal threshold selection for segmentation of dense homogeneous objects in tomographic reconstructions, IEEE Trans. Med. Imaging, Volume 30 (2011), pp. 980-989

[34] S. Bals; K.J. Batenburg; J. Verbeeck; J. Sijbers; G. Van Tendeloo Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes, Nano Lett., Volume 7 (2007), pp. 3669-3674

[35] K.J. Batenburg; S. Bals; J. Sijbers; C. Kubel; P.A. Midgley; J.C. Hernandez; U. Kaiser; E.R. Encina; E.A. Coronado; G. Van Tendeloo 3D imaging of nanomaterials by discrete tomography, Ultramicroscopy, Volume 109 (2009), pp. 730-740

[36] S. Bals; K.J. Batenburg; D.D. Liang; O. Lebedev; G. Van Tendeloo; A. Aerts; J.A. Martens; C.E.A. Kirschhock Quantitative three-dimensional modeling of zeotile through discrete electron tomography, J. Am. Chem. Soc., Volume 131 (2009), pp. 4769-4773

[37] B. Goris; W. Van den Broek; K.J. Batenburg; H.H. Mezerji; S. Bals Electron tomography based on a total variation minimization reconstruction technique, Ultramicroscopy, Volume 113 (2012), pp. 120-130

[38] Z. Saghi; D.J. Holland; R. Leary; A. Falqui; G. Bertoni; A.J. Sederman; L.F. Gladden; P.A. Midgley Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach, Nano Lett., Volume 11 (2011), pp. 4666-4673

[39] J.M. Zielinski; M.S. Vratsanos; J.H. Laurer; R.J. Spontak Phase-separation studies of heat-cured ATU-flexibilized epoxies, Polymer, Volume 37 (1996), pp. 75-84

[40] B. Goris; T. Roelandts; J. Batenburg; H. Heidari Mezerji; S. Bals Advanced reconstruction algorithms for electron tomography: from comparison to combination, Ultramicroscopy, Volume 127 (2012), pp. 40-47

[41] A. Alpers; R.J. Gardner; S. Konig; R.S. Pennington; C.B. Boothroyd; L. Houben; R.E. Dunin-Borkowski; K.J. Batenburg Geometric reconstruction methods for electron tomography, Ultramicroscopy, Volume 128 (2013), pp. 42-54

[42] Z. Saghi; X.J. Xu; G. Mobus Model based atomic resolution tomography, J. Appl. Phys., Volume 106 (2009)

[43] J.R. Jinschek; K.J. Batenburg; H.A. Calderon; R. Kilaas; V. Radmilovic; C. Kisielowski 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography, Ultramicroscopy, Volume 108 (2008), pp. 589-604

[44] S. Van Aert; K.J. Batenburg; M.D. Rossell; R. Erni; G. Van Tendeloo Three-dimensional atomic imaging of crystalline nanoparticles, Nature, Volume 470 (2011), pp. 374-377

[45] S. Bals; M. Casavola; M.A. van Huis; S. Van Aert; K.J. Batenburg; G. Van Tendeloo; D. Vanmaekelbergh Three-dimensional atomic imaging of colloidal core–shell nanocrystals, Nano Lett., Volume 11 (2011), pp. 3420-3424

[46] M.C. Scott; C.C. Chen; M. Mecklenburg; C. Zhu; R. Xu; P. Ercius; U. Dahmen; B.C. Regan; J.W. Miao Electron tomography at 2.4-angstrom resolution, Nature, Volume 483 (2012), pp. 444-447

[47] D. Van Dyck; F.R. Chen Big-Bang tomography as a new route to atomic resolution electron tomography, Nature, Volume 486 (2012), pp. 243-246

[48] S. Van Aert; A. De Backer; G.T. Martinez; B. Goris; S. Bals; G. Van Tendeloo; A. Rosenauer Procedure to count atoms with trustworthy single-atom sensitivity, Phys. Rev. B, Volume 87 (2013)

[49] E. Lee; B.P. Fahimian; C.V. Iancu; C. Suloway; G.E. Murphy; E.R. Wright; D. Castano-Diez; G.J. Jensen; J.W. Miao Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography, J. Struct. Biol., Volume 164 (2008), pp. 221-227

[50] C.C. Chen; C. Zhu; E.R. White; C.Y. Chiu; M.C. Scott; B.C. Regan; L.D. Marks; Y. Huang; J. Miao Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution, Nature, Volume 496 (2013), pp. 74-77

[51] B. Goris; S. Bals; W. Van den Broek; E. Carbo-Argibay; S. Gomez-Grana; L.M. Liz-Marzán; G. Van Tendeloo Atomic-scale determination of surface facets in gold nanorods, Nat. Mater., Volume 11 (2012), pp. 930-935

[52] S.J. Kim; K. Koh; M. Lustig; S. Boyd; D. Gorinevsky An interior-point method for large-scale l(1)-regularized least squares, IEEE J. Sel. Top. Signal Process., Volume 1 (2007), pp. 606-617

[53] B. Goris; A. de Backer; S. Van Aert; S. Gomez-Grana; L.M. Liz-Marzan; G. Van Tendeloo; S. Bals 3D elemental mapping at the atomic scale in bimetallic nanocrystals, Nano Lett., Volume 13 (2013), pp. 4236-4241

[54] K. van Benthem; A.R. Lupini; M. Kim; H.S. Baik; S. Doh; J.H. Lee; M.P. Oxley; S.D. Findlay; L.J. Allen; J.T. Luck; S.J. Pennycook Three-dimensional imaging of individual hafnium atoms inside a semiconductor device, Appl. Phys. Lett., Volume 87 (2005)

[55] H.L.L. Xin; D.A. Muller Prospects for reliable 3D imaging in aberration-corrected STEM, TEM and SCEM, Microsc. Microanal., Volume 15 (2009), pp. 1474-1475

[56] W. Van den Broek; S. Van Aert; D. Van Dyck A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy, Ultramicroscopy, Volume 110 (2010), pp. 548-554

[57] E.C. Cosgriff; P.D. Nellist; A.J. D'Alfonso; S.D. Findlay; G. Behan; P. Wang; L.J. Allen; A.I. Kirkland Image contrast in aberration-corrected scanning confocal electron microscopy, Adv. Imaging Electron Phys., Volume 162 (2010) no. 162, pp. 45-76

[58] P.D. Nellist; G. Behan; A.I. Kirkland; C.J.D. Hetherington Confocal operation of a transmission electron microscope with two aberration correctors, Appl. Phys. Lett., Volume 89 (2006)

[59] P. Wang; G. Behan; M. Takeguchi; A. Hashimoto; K. Mitsuishi; M. Shimojo; A.I. Kirkland; P.D. Nellist Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope, Phys. Rev. Lett., Volume 104 (2010)

[60] P. Ercius; D. Muller Incoherent bright field STEM for imaging and tomography of ultra-thick TEM cross-sections, Microsc. Microanal., Volume 15 (2009), pp. 238-239

[61] U. Kaiser; A. Chuvilin Enhanced compositional contrast in imaging of nanoprecipitates buried in a defective crystal using a conventional TEM, Microsc. Microanal., Volume 9 (2003), pp. 36-41

[62] J.M. Rebled; L. Yedra; S. Estrade; J. Portillo; F. Peiro A new approach for 3D reconstruction from bright field TEM imaging: beam precession assisted electron tomography, Ultramicroscopy, Volume 111 (2011), pp. 1504-1511

[63] J.S. Barnard; J. Sharp; J.R. Tong; P.A. Midgley High-resolution three-dimensional imaging of dislocations, Science, Volume 313 (2006), p. 319

[64] G. Mobus; B.J. Inkson Nanoscale tomography in materials science, Mater. Today, Volume 10 (2007), pp. 18-25

[65] R.D. Leapman; E. Kocsis; G. Zhang; T.L. Talbot; P. Laquerriere Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography, Ultramicroscopy, Volume 100 (2004), pp. 115-125

[66] A. Yurtsever; M. Weyland; D.A. Muller Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography, Appl. Phys. Lett., Volume 89 (2006)

[67] O. Nicoletti; R. Leary; F. de la Pena; D.J. Holland; C. Ducati; P. Midgley Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, EMC 2012, Manchester, 2012

[68] A.C. Twitchett-Harrison; T.J.V. Yates; S.B. Newcomb; R.E. Dunin-Borkowski; P.A. Midgley High-resolution three-dimensional mapping of semiconductor dopant potentials, Nano Lett., Volume 7 (2007), pp. 2020-2023

[69] C. Phatak; M. Beleggia; M. De Graef Vector field electron tomography of magnetic materials: Theoretical development, Ultramicroscopy, Volume 108 (2008), pp. 503-513

[70] S.J. Lade; D. Paganin; M.J. Morgan Electron tomography of electromagnetic fields, potentials and sources, Opt. Commun., Volume 253 (2005), pp. 392-400

[71] C. Phatak; A.K. Petford-Long; M. De Graef Three-dimensional study of the vector potential of magnetic structures, Phys. Rev. Lett., Volume 104 (2010)

[72] M. Hytch; F. Houdellier; F. Hue; E. Snoeck Nanoscale holographic interferometry for strain measurements in electronic devices, Nature, Volume 453 (2008), pp. 1086-1089

[73] M.J. Hytch; E. Snoeck; R. Kilaas Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, Volume 74 (1998), pp. 131-146

[74] B. Goris; M.A. Van Huis; S. Bals; H.W. Zandbergen; L. Manna; G. Van Tendeloo Thermally induced structural and morphological changes of CdSe/CdS octapods, Small, Volume 8 (2012), pp. 937-942

[75] Z.Y. Li; N.P. Young; M. Di Vece; S. Palomba; R.E. Palmer; A.L. Bleloch; B.C. Curley; R.L. Johnston; J. Jiang; J. Yuan Three-dimensional atomic-scale structure of size-selected gold nanoclusters, Nature, Volume 451 (2008), pp. 46-48

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Measuring three-dimensional positions of atoms to the highest accuracy with electrons

Christoph T. Koch; Wouter Van den Broek

C. R. Phys (2014)


Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

Edward D. Boyes; Pratibha L. Gai

C. R. Phys (2014)


Using electron beams to investigate catalytic materials

Bingsen Zhang; Dang Sheng Su

C. R. Phys (2014)