Comptes Rendus
Electron microscopy / Microscopie électronique
Shaping electron beams for the generation of innovative measurements in the (S)TEM
[Réaliser des mesures originales et innovantes en adaptant le faisceau d'électrons d'un (S)TEM]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 190-199.

Dans un microscope électronique à transmission, l'objectif le plus courant est de focaliser le plus finement possible la sonde d'électrons primaires dans le plan de l'échantillon, afin d'obtenir la meilleure résolution spatiale en STEM (Scanning Transmission Electron Microscopy). Dans ce but, l'utilisation d'un correcteur de Cs sonde est particulièrement importante pour s'approcher d'une onde sphérique idéale. Dans cet article, nous discuterons des avantages que peuvent présenter les modifications spécifiques de cette phase pour créer des sondes d'électrons totalement différentes, ouvrant le champ à des applications originales en STEM. Nous insisterons, en particulier, sur les sondes d'électrons de type « vortex », une famille d'ondes possédant une signature azimutale de phase, dont nous décrirons l'obtention, les propriétés et différentes utilisations. Ces concepts très généraux peuvent être étendus à différents types de sondes, alors optimisées pour une mesure ou une intéraction particulière.

In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.

Publié le :
DOI : 10.1016/j.crhy.2013.09.014
Keywords: Vortex beam, Transmission Electron Microscopy, Angular momentum, Topological Charge, Nanomanipulation, Magnetic properties
Mot clés : Vortex, Microscopie électronique en transmission, Moment angulaire, Charge topologique, Nanomanipulation, Propriétés magnétiques
Jo Verbeeck 1 ; Giulio Guzzinati 1 ; Laura Clark 1 ; Roeland Juchtmans 1 ; Ruben Van Boxem 1 ; He Tian 1 ; Armand Béché 1 ; Axel Lubk 1, 2 ; Gustaaf Van Tendeloo 1

1 EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
2 Triebenberglabor, University of Dresden, Zum Triebenberg 1, 01062 Dresden, Germany
@article{CRPHYS_2014__15_2-3_190_0,
     author = {Jo Verbeeck and Giulio Guzzinati and Laura Clark and Roeland Juchtmans and Ruben Van Boxem and He Tian and Armand B\'ech\'e and Axel Lubk and Gustaaf Van Tendeloo},
     title = {Shaping electron beams for the generation of innovative measurements in the {(S)TEM}},
     journal = {Comptes Rendus. Physique},
     pages = {190--199},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2013.09.014},
     language = {en},
}
TY  - JOUR
AU  - Jo Verbeeck
AU  - Giulio Guzzinati
AU  - Laura Clark
AU  - Roeland Juchtmans
AU  - Ruben Van Boxem
AU  - He Tian
AU  - Armand Béché
AU  - Axel Lubk
AU  - Gustaaf Van Tendeloo
TI  - Shaping electron beams for the generation of innovative measurements in the (S)TEM
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 190
EP  - 199
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.09.014
LA  - en
ID  - CRPHYS_2014__15_2-3_190_0
ER  - 
%0 Journal Article
%A Jo Verbeeck
%A Giulio Guzzinati
%A Laura Clark
%A Roeland Juchtmans
%A Ruben Van Boxem
%A He Tian
%A Armand Béché
%A Axel Lubk
%A Gustaaf Van Tendeloo
%T Shaping electron beams for the generation of innovative measurements in the (S)TEM
%J Comptes Rendus. Physique
%D 2014
%P 190-199
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2013.09.014
%G en
%F CRPHYS_2014__15_2-3_190_0
Jo Verbeeck; Giulio Guzzinati; Laura Clark; Roeland Juchtmans; Ruben Van Boxem; He Tian; Armand Béché; Axel Lubk; Gustaaf Van Tendeloo. Shaping electron beams for the generation of innovative measurements in the (S)TEM. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 190-199. doi : 10.1016/j.crhy.2013.09.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.014/

[1] Konstantin Yu. Bliokh; Yury P. Bliokh; Sergey Savel'ev; Franco Nori Semiclassical dynamics of electron wave packet states with phase vortices, Phys. Rev. Lett., Volume 99 ( Nov 2007 ), p. 190404 http://link.aps.org/doi/10.1103/PhysRevLett.99.190404 (URL) | DOI

[2] Masaya Uchida; Akira Tonomura Generation of electron beams carrying orbital angular momentum, Nature, Volume 464 ( April 2010 ) no. 7289, pp. 737-739 http://www.nature.com/nature/journal/v464/n7289/abs/nature08904.html (URL) (ISSN: 0028-0836) | DOI

[3] J. Verbeeck; H. Tian; P. Schattschneider Production and application of electron vortex beams, Nature, Volume 467 ( September 2010 ) no. 7313, pp. 301-304 http://www.ncbi.nlm.nih.gov/pubmed/20844532 (URL) (ISSN: 1476-4687) | DOI

[4] P. Schattschneider; J. Verbeeck Theory of free electron vortices, Ultramicroscopy, Volume 111 (2011) no. 9–10, pp. 1461-1468 http://www.sciencedirect.com/science/article/pii/S0304399111001811 (URL) (ISSN: 0304-3991) | DOI

[5] P.G. Saffman Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1992 http://books.google.be/books?id=ksktDE0yVzcC (URL) (ISBN: 9780521420587)

[6] Ernst Helmut Brandt Vortices in superconductors, Physica C, Supercond., Volume 369 (2002) no. 1–4, pp. 10-20 http://www.sciencedirect.com/science/article/pii/S0921453401012151 (URL) (ISSN: 0921-4534) | DOI

[7] William Whewell Essay towards a first approximation to a map of cotidal lines, Philos. Trans. R. Soc. Lond., Volume 123 (1833), pp. 147-236 http://rstl.royalsocietypublishing.org/content/123/147.full.pdf+html (URL)

[8] J.F. Nye; J.V. Hajnal; J.H. Hannay Phase saddles and dislocations in two-dimensional waves such as the tides, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 417 (1988) no. 1852, pp. 7-20 http://rspa.royalsocietypublishing.org/content/417/1852/7.abstract (URL) | DOI

[9] Jesse L. Silverberg; Matthew Bierbaum; James P. Sethna; Itai Cohen Collective motion of humans in mosh and circle pits at heavy metal concerts, Phys. Rev. Lett., Volume 110 ( May 2013 ), p. 228701 http://link.aps.org/doi/10.1103/PhysRevLett.110.228701 (URL) | DOI

[10] J.F. Nye; M.V. Berry Dislocations in wave trains, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 336 (1974) no. 1605, pp. 165-190 http://rspa.royalsocietypublishing.org/content/336/1605/165.abstract (URL) | DOI

[11] J.M. Vaughan; D.V. Willetts Temporal and interference fringe analysis of TEM01 laser modes, J. Opt. Soc. Am., Volume 73 ( Aug 1983 ) no. 8, pp. 1018-1021 http://www.opticsinfobase.org/abstract.cfm?URI=josa-73-8-1018 (URL) | DOI

[12] V.Yu. Bazhenov; M.S. Soskin; M.V. Vasnetsov Screw dislocations in light wavefronts, J. Mod. Opt., Volume 39 (1992) no. 5, pp. 985-990 http://www.tandfonline.com/doi/abs/10.1080/09500349214551011 (URL) | DOI

[13] Axel Lubk; Laura Clark; Giulio Guzzinati; Jo Verbeeck Topological analysis of paraxially scattered electron vortex beams, Phys. Rev. A, Volume 87 ( Mar 2013 ), p. 033834 http://link.aps.org/doi/10.1103/PhysRevA.87.033834 (URL) | DOI

[14] L. Allen; M.W. Beijersbergen; R.J.C. Spreeuw; J.P. Woerdman Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes, Phys. Rev. A, Volume 45 ( Jun 1992 ), pp. 8185-8189 http://link.aps.org/doi/10.1103/PhysRevA.45.8185 (URL) | DOI

[15] Optical Angular Momentum (L. Allen; S.M. Barnett; M.J. Padgett, eds.), Institute of Physics Publishing, 2003 http://books.google.be/books?id=Vf32PZXJ2gMC (URL) (ISBN: 9780750309011)

[16] The Angular Momentum of Light (D.L. Andrews; M. Babiker, eds.), Cambridge University Press, 2012 http://books.google.be/books?id=li2bysEqHf0C (URL) (ISBN: 9781107006348)

[17] Nana B. Agyei, Flickr — Nanagyei, 2013. URL http://www.flickr.com/photos/nanagyei/6655488913/ [online; accessed 28-June-2013].

[18] M.V. Berry; M.R. Dennis Knotted and linked phase singularities in monochromatic waves, Proc. R. Soc., Math. Phys. Eng. Sci., Volume 457 (2013), pp. 2251-2263 http://rspa.royalsocietypublishing.org/content/457/2013/2251.abstract (URL, 2001) | DOI

[19] M.R. Dennis Topological singularities in wave fields, University of Bristol, 2001 http://www.bris.ac.uk/physics/media/theory-theses/dennis-mr-thesis.pdf (PhD thesis URL)

[20] , Elsevier Science, 2011 http://books.google.be/books?id=BNdCkCXOXX4C D.L. Andrews (Ed.) Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces URL (ISBN: 9780080559667)

[21] Jo Verbeeck; He Tian; Gustaaf Van Tendeloo How to manipulate nanoparticles with an electron beam?, Adv. Mater., Volume 25 ( February 2013 ) no. 8, pp. 1114-1117 http://www.ncbi.nlm.nih.gov/pubmed/23184603 (URL) (ISSN: 1521-4095) | DOI

[22] Andrew G. Peele; Philip J. McMahon; David Paterson; Chanh Q. Tran; Adrian P. Mancuso; Keith A. Nugent; Jason P. Hayes; Erol Harvey; Barry Lai; Ian McNulty Observation of an x-ray vortex, Opt. Lett., Volume 27 ( Oct 2002 ) no. 20, pp. 1752-1754 http://www.opticsinfobase.org/ol/abstract.cfm?id=70214 (URL) | DOI

[23] B. Thidé; H. Then; J. Sjöholm; K. Palmer; J. Bergman; T.D. Carozzi; Ya.N. Istomin; N.H. Ibragimov; R. Khamitova Utilization of photon orbital angular momentum in the low-frequency radio domain, Phys. Rev. Lett., Volume 99 ( Aug 2007 ), p. 087701 http://prl.aps.org/abstract/PRL/v99/i8/e087701 (URL) | DOI

[24] Katsuhiko Miyamoto; Sachio Miyagi; Masaki Yamada; Kenji Furuki; Nobuyuki Aoki; Masahito Okida; Takashige Omatsu Optical vortex pumped mid-infrared optical parametric oscillator, Opt. Express, Volume 19 ( Jun 2011 ) no. 13, pp. 12220-12226 http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-13-12220 (URL) | DOI

[25] Bernd Terhalle; Andreas Langner; Birgit Päivänranta; Vitaliy A. Guzenko; Christian David; Yasin Ekinci Generation of extreme ultraviolet vortex beams using computer generated holograms, Opt. Lett., Volume 36 ( Nov 2011 ) no. 21, pp. 4143-4145 http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-36-21-4143 (URL) | DOI

[26] K.D. Skeldon; C. Wilson; M. Edgar; M.J. Padgett An acoustic spanner and its associated rotational Doppler shift, New J. Phys., Volume 10 (2008) no. 1, p. 013018 http://stacks.iop.org/1367-2630/10/i=1/a=013018 (URL) | DOI

[27] Reza Torabi; Zahra Rezaei The effect of Dirac phase on acoustic vortex in media with screw dislocation, Phys. Lett. A, Volume 377 (2013) no. 28–30, pp. 1668-1671 http://www.sciencedirect.com/science/article/pii/S0375960113004842 (URL) (ISSN: 0375-9601) | DOI

[28] Gregorius C.G. Berkhout; Marco W. Beijersbergen Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects, Phys. Rev. Lett., Volume 101 ( Sep 2008 ), p. 100801 http://link.aps.org/doi/10.1103/PhysRevLett.101.100801 (URL) | DOI

[29] Jian Wang; Jeng-Yuan Yang; Irfan M. Fazal; Nisar Ahmed; Yan Yan; Hao Huang; Yongxiong Ren; Yang Yue; Samuel Dolinar; Moshe Tur; Alan E. Willner Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics (2012) http://www.nature.com/nphoton/journal/v6/n7/full/nphoton.2012.138.html (URL) | DOI

[30] Sanjoy Roychowdhury; Virendra K. Jaiswal; R.P. Singh Implementing controlled NOT gate with optical vortex, Opt. Commun., Volume 236 (2004) no. 4–6, pp. 419-424 http://www.sciencedirect.com/science/article/pii/S0030401804003013 (URL) (ISSN: 0030-4018) | DOI

[31] J. Durnin; J.J. Miceli; J.H. Eberly Diffraction-free beams, Phys. Rev. Lett., Volume 58 ( Apr 1987 ), pp. 1499-1501 http://prl.aps.org/abstract/PRL/v58/i15/p1499_1 (URL) | DOI

[32] J. Verbeeck; P. Schattschneider; S. Lazar; M. Stoger-Pollach; S. Löffler; A. Steiger-Thirsfeld; G. Van Tendeloo Atomic scale electron vortices for nanoresearch, Appl. Phys. Lett., Volume 99 (2011) no. 20, p. 203109 | DOI

[33] Konstantin Y. Bliokh; Peter Schattschneider; Jo Verbeeck; Franco Nori Electron vortex beams in a magnetic field: a new twist on Landau levels and Aharonov–Bohm states, Phys. Rev. X, Volume 2 (2012) no. 4, p. 041011 http://link.aps.org/doi/10.1103/PhysRevX.2.041011 (URL) (ISSN: 2160-3308) | DOI

[34] Konstantin Y. Bliokh; Mark R. Dennis; Franco Nori Relativistic electron vortex beams: Angular momentum and spin–orbit interaction, Phys. Rev. Lett., Volume 107 ( Oct 2011 ), p. 174802 http://link.aps.org/doi/10.1103/PhysRevLett.107.174802 (URL) | DOI

[35] Ruben Van Boxem; Jo Verbeeck; Bart Partoens Spin effects in electron vortex states, Europhys. Lett., Volume 102 (2013) no. 4, p. 40010 http://stacks.iop.org/0295-5075/102/i=4/a=40010 (URL) | DOI

[36] Huolin L. Xin; Haimei Zheng On-column 2p bound state with topological charge ±1 excited by an atomic-size vortex beam in an aberration-corrected scanning transmission electron microscope, Microsc. Microanal., Volume 18 (2012) no. 7, pp. 711-719 (ISSN: 1435-8115) | DOI

[37] Benjamin J. McMorran; Amit Agrawal; Ian M. Anderson; Andrew A. Herzing; Henri J. Lezec; Jabez J. McClelland; John Unguris Electron vortex beams with high quanta of orbital angular momentum, Science (New York, N.Y.), Volume 331 ( January 2011 ) no. 6014, pp. 192-195 http://www.sciencemag.org/content/331/6014/192.abstract (URL) (ISSN: 1095-9203) | DOI

[38] M.V. Berry Optical currents, J. Opt. A, Pure Appl. Opt., Volume 11 (2009) no. 9, p. 094001 http://stacks.iop.org/1464-4258/11/i=9/a=094001 (URL) | DOI

[39] G.C.G. Berkhout Fundamental methods to measure the orbital angular momentum of light, Leiden University, 2011 https://openaccess.leidenuniv.nl/handle/1887/17842 (PhD thesis URL)

[40] M.V. Vasnetsov; V.A. Pas'ko; M.S. Soskin Analysis of orbital angular momentum of a misaligned optical beam, New J. Phys., Volume 7 (2005) no. 1, p. 46 http://iopscience.iop.org/1367-2630/7/1/046 (URL) | DOI

[41] Stefan Löffler; Peter Schattschneider Elastic propagation of fast electron vortices through crystals, Acta Crystallogr. Sect. A, Volume 68 ( Jul 2012 ) no. 4, pp. 443-447 http://scripts.iucr.org/cgi-bin/paper?S0108767312013189 (URL) | DOI

[42] I.P. Ivanov; V.G. Serbo Scattering of twisted particles: Extension to wave packets and orbital helicity, Phys. Rev. A, Volume 84 ( Sep 2011 ), p. 033804 http://pra.aps.org/abstract/PRA/v84/i3/e033804 (URL) | DOI

[43] S.M. Lloyd; M. Babiker; J. Yuan; C. Kerr-Edwards Electromagnetic vortex fields, spin, and spin–orbit interactions in electron vortices, Phys. Rev. Lett., Volume 109 ( Dec 2012 ), p. 254801 http://prl.aps.org/abstract/PRL/v109/i25/e254801 (URL) | DOI

[44] Noa Voloch-Bloch; Yossi Lereah; Yigal Lilach; Avraham Gover; Ady Arie Generation of electron Airy beams, Nature, Volume 494 ( February 2013 ) no. 7437, pp. 331-335 http://www.ncbi.nlm.nih.gov/pubmed/23426323 (URL) (ISSN: 1476-4687) | DOI

[45] Peter Schattschneider; M. Stöger-Pollach; J. Verbeeck Novel vortex generator and mode converter for electron beams, Phys. Rev. Lett., Volume 109 ( August 2012 ) no. 8, pp. 1-5 http://link.aps.org/doi/10.1103/PhysRevLett.109.084801 (URL) (ISSN: 0031-9007) | DOI

[46] Jo Verbeeck; He Tian; Armand Béché A new way of producing electron vortex probes for STEM, Ultramicroscopy, Volume 113 ( October 2011 ), pp. 83-87 http://linkinghub.elsevier.com/retrieve/pii/S0304399111002531 (URL) (ISSN: 0304-3991) | DOI

[47] Colin Greenshields; Robert L. Stamps; Sonja Franke-Arnold Vacuum Faraday effect for electrons, New J. Phys., Volume 14 ( October 2012 ) no. 10, p. 103040 http://stacks.iop.org/1367-2630/14/i=10/a=103040 (URL) (ISSN: 1367-2630) | DOI

[48] Giulio Guzzinati; Peter Schattschneider; Konstantin Y. Bliokh; Franco Nori; Jo Verbeeck Observation of the Larmor and Gouy rotations with electron vortex beams, Phys. Rev. Lett., Volume 110 ( February 2013 ) no. 9, p. 093601 http://link.aps.org/doi/10.1103/PhysRevLett.110.093601 (URL) (ISSN: 0031-9007) | DOI

[49] Koh Saitoh; Yuya Hasegawa; Nobuo Tanaka; Masaya Uchida Production of electron vortex beams carrying large orbital angular momentum using spiral zone plates, J. Electron Microsc., Volume 61 ( June 2012 ) no. 3, pp. 171-177 http://www.ncbi.nlm.nih.gov/pubmed/22394576 (URL) (ISSN: 1477-9986) | DOI

[50] R. Danev; K. Nagayama Transmission electron microscopy with Zernike phase plate, Ultramicroscopy, Volume 88 ( September 2001 ) no. 4, pp. 243-252 http://linkinghub.elsevier.com/retrieve/pii/S0304399101000882 (URL) (ISSN: 0304-3991)

[51] R. Danev; H. Okawara; N. Usuda; K. Kametani; K. Nagayama A novel phase-contrast transmission electron microscopy producing high-contrast topographic images of weak objects, J. Biol. Phys., Volume 28 (2002) no. 4, pp. 627-635 http://www.springerlink.com/index/N5118841393L26XP.pdf (URL)

[52] F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects, Physica, Volume 9 ( July 1942 ) no. 7, pp. 686-698 http://linkinghub.elsevier.com/retrieve/pii/S003189144280035X (URL) (ISSN: 0031-8914) | DOI

[53] F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects part II, Physica, Volume 9 ( December 1942 ) no. 10, pp. 974-986 http://linkinghub.elsevier.com/retrieve/pii/S0031891442800798 (URL) (ISSN: 0031-8914) | DOI

[54] K. Schultheiß; F. Perez-Willard; B. Barton; D. Gerthsen; R.R. Schroder Fabrication of a Boersch phase plate for phase contrast imaging in a transmission electron microscope, Rev. Sci., Volume 77 (2006) no. 3, p. 90 http://link.aip.org/link/?RSINAK/77/033701/1 (URL) (ISSN: 0034-6748) | DOI

[55] M.W. Beijersbergen; L. Allen; H. Van der Veen; J.P. Woerdman Astigmatic laser mode converters and transfer of orbital angular momentum, Opt. Commun., Volume 96 (1993) no. 1–3, pp. 123-132 http://www.sciencedirect.com/science/article/pii/003040189390535D (URL)

[56] T.C. Petersen; M. Weyland; D.M. Paganin; T.P. Simula; S.A. Eastwood; M.J. Morgan Electron vortex production and control using aberration induced diffraction catastrophes, Phys. Rev. Lett., Volume 110 ( January 2013 ) no. 3, p. 033901 http://link.aps.org/doi/10.1103/PhysRevLett.110.033901 (URL) (ISSN: 0031-9007) | DOI

[57] L. Clark; A. Béché; G. Guzzinati; A. Lubk; M. Mazilu; R. Van Boxem; J. Verbeeck Exploiting lens aberrations to create electron-vortex beams, Phys. Rev. Lett., Volume 111 ( Aug 2013 ), p. 064801 http://link.aps.org/doi/10.1103/PhysRevLett.111.064801 (URL) | DOI

[58] Akira Tonomura; Tsuyoshi Matsuda; Ryo Suzuki; Akira Fukuhara; Nobuyuki Osakabe; Hiroshi Umezaki; Junji Endo; Kohsei Shinagawa; Yutaka Sugita; Hideo Fujiwara Observation of Aharonov–Bohm effect by electron holography, Phys. Rev. Lett., Volume 48 ( May 1982 ) no. 21, pp. 1443-1446 http://link.aps.org/doi/10.1103/PhysRevLett.48.1443 (URL) (ISSN: 0031-9007) | DOI

[59] C.J. Edgcombe; J.C. Loudon Use of Aharonov–Bohm effect and chirality control in magnetic phase plates for transmission microscopy, J. Phys. Conf. Ser., Volume 371 ( July 2012 ), p. 012006 http://stacks.iop.org/1742-6596/371/i=1/a=012006?key=crossRef.7ac987ff9728f0920601ae16f557a3ae (URL) (ISSN: 1742-6596) | DOI

[60] Akira Tonomura Applications of electron holography, Rev. Mod. Phys., Volume 59 ( July 1987 ) no. 3, pp. 639-669 http://link.aps.org/doi/10.1103/RevModPhys.59.639 (URL) (ISSN: 0034-6861) | DOI

[61] A. Beche; R. Van Boxem; G. Van Tendeloo; J. Verbeeck Magnetic monopole field exposed by electrons, Nat. Phys., Volume 10 (2014) no. 1, pp. 26-29 (ISSN: 1745-2473) | DOI

[62] A.M. Blackburn; J.C. Loudon Vortex beam production and contrast enhancement from a magnetic spiral phase plate, Ultramicroscopy, Volume 136 (2014), pp. 127-143

[63] Peter Schattschneider; Bernhard Schaffer; I. Ennen; J. Verbeeck Mapping spin-polarized transitions with atomic resolution, Phys. Rev. B, Volume 85 ( April 2012 ) no. 13, p. 134422 http://link.aps.org/doi/10.1103/PhysRevB.85.134422 (URL) (ISSN: 1098-0121) | DOI

[64] G. Schütz; W. Wagner; W. Wilhelm; P. Kienle; R. Zeller; R. Frahm; G. Materlik Absorption of circularly polarized X-rays in iron, Phys. Rev. Lett., Volume 58 ( Feb 1987 ), pp. 737-740 http://link.aps.org/doi/10.1103/PhysRevLett.58.737 (URL) | DOI

[65] P. Schattschneider; S. Rubino; C. Hébert; J. Rusz; J. Kunes; P. Novák; E. Carlino; M. Fabrizioli; G. Panaccione; G. Rossi Detection of magnetic circular dichroism using a transmission electron microscope, Nature, Volume 441 ( May 2006 ) no. 7092, pp. 486-488 http://www.ncbi.nlm.nih.gov/pubmed/16724061 (URL) (ISSN: 1476-4687) | DOI

[66] P. Schattschneider; I. Ennen; S. Loffler; M. Stoger-Pollach; J. Verbeeck Circular dichroism in the electron microscope: Progress and applications (invited), J. Appl. Phys., Volume 107 (2010) no. 9, p. 09D311 http://link.aip.org/link/JAPIAU/v107/i9/p09D311/s1&Agg=doi (URL) (ISSN: 0021-8979) | DOI

[67] P. Schattschneider; B. Schaffer; I. Ennen; J. Verbeeck Mapping spin-polarized transitions with atomic resolution, Phys. Rev. B, Volume 85 ( Apr 2012 ), p. 134422 | DOI

[68] R.B. Pettit; J. Silcox; R. Vincent Measurement of surface-plasmon dispersion in oxidized aluminum films, Phys. Rev. B, Volume 11 ( Apr 1975 ), pp. 3116-3123 http://link.aps.org/doi/10.1103/PhysRevB.11.3116 (URL) | DOI

[69] Jaysen Nelayah; Mathieu Kociak; Odile Stéphan; F. Javier Garcia de Abajo; Marcel Tencé; Luc Henrard; Dario Taverna; Isabel Pastoriza-Santos; Luis M. Liz-Marzán; Christian Colliex Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys., Volume 3 ( April 2007 ) no. 5, pp. 348-353 http://www.nature.com/nphys/journal/v3/n5/pdf/nphys575.pdf (URL) (ISSN: 1745-2473) | DOI

[70] Zeinab Mohammadi; Cole P. Van Vlack; Stephen Hughes; Jens Bornemann; Reuven Gordon Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons, Opt. Express, Volume 20 ( July 2012 ) no. 14, pp. 15024-15034 http://www.ncbi.nlm.nih.gov/pubmed/22772198 (URL) (ISSN: 1094-4087)

[71] D.R. Smith; J.B. Pendry; M.C.K. Wiltshire Metamaterials and negative refractive index, Science, Volume 305 (2004), pp. 788-792 http://www.sciencemag.org/content/305/5685/788.short (URL)

[72] A. Alù; N. Engheta Cloaking and transparency for collections of particles with metamaterial and plasmonic covers, Opt. Express, Volume 15 (2007), pp. 7578-7590 http://stacks.iop.org/1464-4258/10/i=9/a=093002 (URL) | DOI

[73] Ebrahim Karimi; Lorenzo Marrucci; Vincenzo Grillo; Enrico Santamato Spin-to-orbital angular momentum conversion and spin-polarization filtering in electron beams, Phys. Rev. Lett., Volume 108 ( January 2012 ) no. 4, p. 044801 http://link.aps.org/doi/10.1103/PhysRevLett.108.044801 (URL) (ISSN: 0031-9007) | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Interferometric methods for mapping static electric and magnetic fields

Giulio Pozzi; Marco Beleggia; Takeshi Kasama; ...

C. R. Phys (2014)


Seeing and measuring with electrons: Transmission electron microscopy today and tomorrow – An introduction

Christian Colliex

C. R. Phys (2014)