Skip to main content
Log in

Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper electrodeposition is used to obtain Cu nanoparticles, as it allows good control over particle size and distribution. These Cu particles were deposited onto a gas diffusion electrode which increased the resulting surface area. Prior to deposition, the surface was pre-treated with NaOH, HNO3, MQ and TX100 to investigate the influence on the electrodeposition of Cu on the gas diffusion electrode (GDE). When using HNO3, the smallest particles with the most homogeneous distribution and high particle roughness were obtained. Once the optimal substrate was determined, we further demonstrated that by altering the electrodeposition parameters, the particle size and density could be tuned. On the one hand, increasing the nucleation potential led to a higher particle density resulting in smaller particles because of an increased competition between particles. Finally, the Cu particle size increased when applying a greater growth charge and growth potential. This fundamental study thus opens up a path towards the synthesis of supported Cu materials with increased surface areas, which is interesting from a catalytic point of view. Larger surface areas are generally correlated with a better catalyst performance and thus higher product yields. This research can contributed in obtaining new insides into the deposition of metallic nanoparticles on rough surfaces.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim D, Kley CS, Li Y, Yang P (2017) Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc Natl Acad Sci USA 114(40):10560–10565

    CAS  PubMed  Google Scholar 

  2. Reske R, Mistry H, Behafarid F, Cuenya BR, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136(3):6978–6986

    CAS  PubMed  Google Scholar 

  3. Yang HJ, He SY, Chen HL, Tuan HY (2014) Monodisperse copper nanocubes: synthesis, self-assembly, and large-area dense-packed films. Chem Mater 26(5):1785–1793

    CAS  Google Scholar 

  4. Yang KD (2016) Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew Chem 129(3):814–818

    Google Scholar 

  5. Tamilvanan A, Balamurugan K, Ponappa K, Kumar BM (2014) Copper nanoparticles: synthetic strategies, properties and multifunctional application. Int J Nanosci 13(02):1430001

    Google Scholar 

  6. Lee Y, Choi J, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41):415604

    PubMed  Google Scholar 

  7. Yaghoubi Z (2015) Selecting nanoparticles in the medical industry based upon AHP method. 6(1):45–54

  8. Baturina OA (2008) CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles, pp 5–6

  9. Jeon HS et al (2017) Prism-shaped Cu nanocatalysts for electrochemical CO reduction to ethylene

  10. Loiudice A et al (2016) Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angewandte 94720:5789–5792

    Google Scholar 

  11. Ko WY, Chen WH, Cheng CY, Lin KJ (2009) Architectural growth of Cu nanoparticles through electrodeposition. Nanoscale Res Lett 4(12):1481–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang TY, Liang RM, Wu PW, Chen JY, Hsieh YC (2009) Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes. Mater Lett 63(12):1001–1003

    CAS  Google Scholar 

  13. Le MTH (2011) Electrochemical reduction of CO2 to methanol, vol 152, pp 1–97

  14. Malik K, Bajaj NK, Verma A (2018) Effect of catalyst layer on electrochemical reduction of carbon dioxide using different morphologies of copper. J CO2 Util 27:355–365

    CAS  Google Scholar 

  15. Kas R, Kortlever R, Yilmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2(3):354–358

    CAS  Google Scholar 

  16. Tang W et al (2012) The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys 14(1):76–81

    CAS  PubMed  Google Scholar 

  17. Cao H, Hang T, Ling H, Li M (2013) Behaviors of chloride ions in methanesulfonic acid bath for copper electrodeposition of through-silicon-via. J Electrochem Soc 160(4):D146–D149

    CAS  Google Scholar 

  18. Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136(38):13319–13325

    CAS  PubMed  Google Scholar 

  19. Horst AEW, Mangold KM, Holtmann D (2016) Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion. Biotechnol Bioeng 113(2):260–267

    CAS  PubMed  Google Scholar 

  20. Kaisheva A, Iliev I, Kazareva R, Christov S, Wollenberger U, Scheller FW (1996) Enzyme/gas-diffusion electrodes for determination of phenol. Sens Actuators B 33(1–3):39–43

    CAS  Google Scholar 

  21. Merino-Garcia I, Albo J, Irabien A (2018) Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotechnology 29(1):14001

    CAS  Google Scholar 

  22. Romero Cuellar NS, Wiesner-Fleischer K, Fleischer M, Rucki A, Hinrichsen O (2019) Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities. Electrochim Acta 307:164–175

    CAS  Google Scholar 

  23. Qiu YL, Zhong HX, Zhang TT, Bin Xu W, Li XF, Zhang HM (2017) Copper electrode fabricated via pulse electrodeposition: toward high methane selectivity and activity for CO2 electroreduction. ACS Catal 7(9):6302–6310

    CAS  Google Scholar 

  24. Guo H et al (2016) Controllable synthesis of Cu–Ni core–shell nanoparticles and nanowires with tunable magnetic properties. Chem Commun 52(42):6918–6921

    CAS  Google Scholar 

  25. Lee KR, Lim JH, Lee JK, Chun HS (1999) Reduction of carbon dioxide in 3-dimensional gas diffusion electrodes. Korean J Chem Eng 16(6):829–836

    CAS  Google Scholar 

  26. Xiang H, Rasul S, Scott K, Portoles J, Cumpson P, Yu EH (2019) Enhanced selectivity of carbonaceous products from electrochemical reduction of CO2 in aqueous media. J CO2 Util 30:214–221

    CAS  Google Scholar 

  27. Sen S et al (2017) Pulse plating of copper nanostructures onto gas diffusion layers for the electroreduction of carbon dioxide to hydrocarbons. In: 2017 MRS Fall Meeting & Exhibit

  28. Moreno-Castilla C, Carrasco-Marín F, Maldonado-Hódar FJ, Rivera-Utrilla J (1998) Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon N Y 36(1–2):145–151

    CAS  Google Scholar 

  29. Chen JP, Wu S (2004) Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20(6):2233–2242

    CAS  PubMed  Google Scholar 

  30. Fan L et al (2018) Effects of surface modification on the reactivity of activated carbon in direct carbon fuel cells. Electrochim Acta 284:630–638

    CAS  Google Scholar 

  31. Aksoylu AE, Madalena M, Freitas A, Pereira MFR, Figueiredo JL (2001) Effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon N Y 39(2):175–185

    CAS  Google Scholar 

  32. Senthil Kumar SM, Soler Herrero J, Irusta S, Scott K (2010) The effect of pretreatment of Vulcan XC-72R carbon on morphology and electrochemical oxygen reduction kinetics of supported Pd nano-particle in acidic electrolyte. J Electroanal Chem 647(2):211–221

    CAS  Google Scholar 

  33. Bai J, Bo X, Zhu D, Wang G, Guo L (2010) A comparison of the electrocatalytic activities of ordered mesoporous carbons treated with either HNO3 or NaOH. Electrochim Acta 56(2):657–662

    CAS  Google Scholar 

  34. Lázaro MJ, Calvillo L, Bordejé EG, Moliner R, Juan R, Ruiz CR (2007) Functionalization of ordered mesoporous carbons synthesized with SBA-15 silica as template. Microporous Mesoporous Mater 103(1–3):158–165

    Google Scholar 

  35. Wang X, Varela AS, Bergmann A, Kühl S, Strasser P (2017) Catalyst particle density controls hydrocarbon product selectivity in CO2 electroreduction on CuOx. Chemsuschem 10(22):4642–4649

    CAS  PubMed  Google Scholar 

  36. Li J, Ma L, Li X, Lu C, Liu H (2005) Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Ind Eng Chem Res 44(15):5478–5482

    CAS  Google Scholar 

  37. Harniman RL, Plana D, Carter GH, Bradley KA, Miles MJ, Fermín DJ (2017) Real-time tracking of metal nucleation via local perturbation of hydration layers. Nat Commun 8(1):1–8

    CAS  Google Scholar 

  38. Nagar M, Radisic A, Strubbe K, Vereecken PM (2016) The effect of the substrate characteristics on the electrochemical nucleation and growth of copper. J Electrochem Soc 163(12):D3053–D3061

    CAS  Google Scholar 

  39. Shao W, Pattanaik G, Zangari G (2007) Electrochemical nucleation and growth of copper from acidic sulfate electrolytes on n-Si(001). J Electrochem Soc 154(7):D339

    CAS  Google Scholar 

  40. Aotani K, Sumiya H (2011) Studies on electrodeposition of copper from methanesulphonic acid bath. J Met Finish Soc Japan 8(1):12–18

    Google Scholar 

  41. Gernon MD, Wu M, Buszta T, Janney P (1999) Environmental benefits of methanesulfonic acid. Green Chem 1(3):127–140

    CAS  Google Scholar 

  42. Cho SK, Kim MJ, Kim JJ (2011) MSA as a supporting electrolyte in copper electroplating for filling of damascene trenches and through silicon vias. Electrochem Solid State Lett. 14(5):D52

    Google Scholar 

  43. Hasan M, Rohan JF (2010) Cu electrodeposition from methanesulfonate electrolytes for ULSI and MEMS applications. J Electrochem Soc 157(5):D278

    CAS  Google Scholar 

  44. Singh K, Bharose R, Verma SK, Singh VK (2013) Potential of powdered activatedmustard cake for decolorising raw sugar. J Sci Food Agric 93(1):157–165

    CAS  PubMed  Google Scholar 

  45. Le Hoa TM (2018) Characterization of multi-walled carbon nanotubes functionalized by a mixture of HNO3/H2SO4. Diam Relat Mater 89:43–51

    Google Scholar 

  46. Chiang YC, Lin WH, Chang YC (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4 /HNO3 oxidation. Appl Surf Sci 257(6):2401–2410

    CAS  Google Scholar 

  47. Pise MT, Srinivas S, Chatterjee A, Kashyap BP, Singh RN, Tatiparti SSV (2020) Influence of surface condition on the current densities rendering nucleation loop during cyclic voltammetry for electrodeposition of Pd thin films. Surf Interfaces 20:100525

    Google Scholar 

  48. Rezaei M, Tabaian SH, Haghshenas DF (2012) A kinetic description of Pd electrodeposition under mixed control of charge transfer and diffusion. J Electroanal Chem 687:95–101

    CAS  Google Scholar 

  49. Radisic A, Ross FM, Searson PC (2006) In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15):7862–7868

    CAS  PubMed  Google Scholar 

  50. Wu S, Yin Z, He Q, Lu G, Yan Q, Zhang H (2011) Nucleation mechanism of electrochemical deposition of Cu on reduced graphene oxide electrodes. J Phys Chem C 115(32):15973–15979

    CAS  Google Scholar 

  51. Tolosa R (2011) Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 158(11):E107–E110

    Google Scholar 

  52. Zhou X, Wang Y, Liang Z, Jin H (2018) Electrochemical deposition and nucleation/growth mechanism of Ni-Co-Y2O3 multiple coatings. Materials (Basel) 11(7):1124

    Google Scholar 

  53. Scharifker B (1982) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Google Scholar 

  54. Gunawardena G, Hills G, Montenegro I, Scharifker B (1982) Electrochemical nucleation. Part I. General considerations. J Electroanal Chem 138(2):225–239

    CAS  Google Scholar 

  55. Pei A, Zheng G, Shi F, Li Y, Cui Y (2017) Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett 17(2):1132–1139

    CAS  PubMed  Google Scholar 

  56. Geboes B, Vanrenterghem B, Ustarroz J, Pauwels D (2014) Influence of the morphology of electrodeposited nanoparticles on the activity of organic halide reduction. Chem Eng Trans 41:73–78

    Google Scholar 

  57. Ustarroz J, Ke X, Hubin A, Bals S, Terryn H (2012) New Insights into the Early Stages of Nanoparticle Electrodeposition. J Phys Chem C 116(3):2322–2329

    CAS  Google Scholar 

  58. Ely DR, García RE (2013) Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J Electrochem Soc 160(4):A662–A668

    CAS  Google Scholar 

  59. Huang L, Lee ES, Kim KB (2005) Electrodeposition of monodisperse copper nanoparticles on highly oriented pyrolytic graphite electrode with modulation potential method. Colloids Surf A 262(1–3):125–131

    CAS  Google Scholar 

  60. Oztekin Y et al (2012) Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochim Acta 76:201–207

    CAS  Google Scholar 

  61. Xi L, Shou D, Wang F (2015) Electrodeposition of monodispersed Cu nanoparticles on poly-p-aminobenzene sulfonic acid functionalized glassy carbon electrode and the electrocatalytic reduction toward H2O2. J Electroanal Chem 747:83–90

    CAS  Google Scholar 

  62. Bolzán AE (2013) Electrodeposition of copper on glassy carbon electrodes in the presence of picolinic acid. Electrochim Acta 113(2):706–718

    Google Scholar 

Download references

Funding

L. Pacquets was supported through a PhD fellowship strategic basic research (1S56918N) of the Research Foundation—Flanders (FWO). N. Daems was supported through a postdoctoral fellowship (12Y3919N—ND) of the Research Foundation—Flanders (FWO). S. Neukermans was supported through an FWO project grant (G093317N). This research was financed by the research counsel of the university of Antwerp (BOF-GOA 33928). The authors recognize the contribution of Thomas Kenis for analytical validation and methodology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this work.

Corresponding author

Correspondence to T. Breugelmans.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacquets, L., Irtem, E., Neukermans, S. et al. Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution. J Appl Electrochem 51, 317–330 (2021). https://doi.org/10.1007/s10800-020-01474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01474-5

Keywords

Navigation