Skip to main content

Strained Graphene Structures: From Valleytronics to Pressure Sensing

  • Conference paper
  • First Online:
Nanostructured Materials for the Detection of CBRN

Abstract

Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films Science 306:666

    Google Scholar 

  2. Mermin ND, Wagner H (1966) Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models Phys Rev Lett 17:1133

    Google Scholar 

  3. Milovanovic SP (2017) Electronic transport properties in nano- and micro-engineered graphene structures (University of Antwerp), web: www.nano.uantwerpen.be/cmt/PhD_slavisa_milovanovic.pdf

  4. Takagi M (1954) Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films J Phys Soc Jpn 9:359

    Google Scholar 

  5. Venables JA, Spiller GDT, Hanbücken M (1984) Nucleation and growth of thin films Rep Prog Phys 47:399

    Article  Google Scholar 

  6. Gibney E (2015) The super materials that could trump graphene Nature 522:274

    Google Scholar 

  7. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene Science 321:385

    Google Scholar 

  8. Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension Phys Rev B 76:064120

    Google Scholar 

  9. Pereira VM, Castro Neto AH, Peres NMR (2009) Tight-binding approach to uniaxial strain in graphene Phys Rev B 80:045401

    Google Scholar 

  10. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene Rev Mod Phys 81:109

    Article  Google Scholar 

  11. Partoens B, Peeters FM (2006) From graphene to graphite: Electronic structure around the K point Phys Rev B 74:075404

    Google Scholar 

  12. Landau LD, Lifshitz EM (1986) Theory of elasticity – course of theoretical physics, Vol 7. Springer, Berlin

    Google Scholar 

  13. Pereira VM, Castro Neto AH (2009) Strain Engineering of Graphene’s Electronic Structure Phys Rev Lett 103:046801

    Google Scholar 

  14. Vozmediano M, Katsnelson M, Guinea F (2010) Gauge fields in graphene Phys Rep 496:109

    Google Scholar 

  15. Guinea F, Katsnelson MI, Geim AK (2009) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering Nat Phys 6:30

    Google Scholar 

  16. Guinea F, Geim AK, Katsnelson MI, Novoselov KS (2010) Generating quantizing pseudomagnetic fields by bending graphene ribbons Phys Rev B 81:035408

    Google Scholar 

  17. Zhu S, Stroscio JA, Li T (2015) Programmable Extreme Pseudomagnetic Fields in Graphene by a Uniaxial Stretch Phys Rev Lett 115:245501

    Google Scholar 

  18. Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Castro Neto AH, Crommie MF (2010) Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles Science 329:544

    Google Scholar 

  19. Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective Molecular Sieving through Porous Graphene Nat Nanotech 7:728

    Google Scholar 

  20. Milovanovic SP, Peeters FM (2016) Strained graphene Hall bar J Phys Condens Matter 29:075601

    Article  ADS  Google Scholar 

  21. Kim K-J, Blanter Ya M, Ahn K-H (2011) Interplay between real and pseudomagnetic field in graphene with strain Phys Rev B 84:081401(R)

    Google Scholar 

  22. de Juan F, Cortijo A, Vozmediano MAH, Cano A (2011) Aharonov-Bohm interferences from local deformations in graphene Nat Phys 7:810

    Google Scholar 

  23. Klimov NN, Jung S, Zhu S, Li T, Wright CA, Solares SD, Newell DB, Zhitenev NB, Stroscio JA (2012) Electromechanical Properties of Graphene Drumheads Science 336:1557

    Google Scholar 

  24. Masir MR, Moldovan D, Peeters FM (2013) Pseudo magnetic field in strained graphene: Revisited Solid State Commun 76:175–176

    Google Scholar 

  25. Settnes M, Power SR, Jauho A-P (2016) Pseudomagnetic fields and triaxial strain in graphene Phys Rev B 93:035456

    Google Scholar 

  26. Jones GW, Pereira VM (2014) Designing electronic properties of two-dimensional crystals through optimization of deformations New J Phys 16:093044

    Google Scholar 

  27. Jones GW, Bahamon DA, Castro Neto AH, Pereira VM (2017) Quantized Transport, Strain-Induced Perfectly Conducting Modes, and Valley Filtering on Shape-Optimized Graphene Corbino Devices Nano Lett 17:5304

    Google Scholar 

  28. Kane CL, Mele EJ (2005) Quantum Spin Hall Effect in Graphene Phys Rev Lett 95:226801

    Google Scholar 

  29. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature Nature 448:571

    Google Scholar 

  30. Yang T-Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali SR, Pachoud A, Zeng M, Popinciuc M, Güntherodt G, Beschoten B, Özyilmaz B (2011) Observation of Long Spin-Relaxation Times in Bilayer Graphene at Room Temperature Phys Rev Lett 107:047206

    Google Scholar 

  31. Dlubak B, Martin M-B, Deranlot C, Servet B, Xavier S, Mattana R, Sprinkle M, Berger C, De Heer WA, Petroff F, Anane A, Seneor P, Fert A (2012) Highly efficient spin transport in epitaxial graphene on SiC Nat Phys 8:557

    Google Scholar 

  32. Han W, Kawakami RK, Gmitra M, Fabian J (2014) Graphene spintronics Nat Nanotech 9:794

    Article  Google Scholar 

  33. Schmidt G, Ferrand D, Molenkamp LW, Filip AT, van Wees BJ (2000) Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor Phys Rev B 62:R4790(R)

    Google Scholar 

  34. Gunawan O, Habib B, De Poortere EP, Shayegan M (2006) Quantized conductance in an AlAs two-dimensional electron system quantum point contact Phys Rev B 74:155436

    Google Scholar 

  35. Rycerz A, Tworzydło J, Beenakker CWJ (2007) Valley filter and valley valve in graphene Nat Phys 3:172

    Google Scholar 

  36. Akhmerov AR, Bardarson JH, Rycerz A, Beenakker CWJ (2008) Theory of the valley-valve effect in graphene nanoribbons Phys Rev B 77:205416

    Google Scholar 

  37. Gunlycke D, White CT (2011) Graphene Valley Filter Using a Line Defect Phys Rev Lett 106:136806

    Google Scholar 

  38. Liu Y, Song J, Li Y, Liu Y, Sun Q (2013) Controllable valley polarization using graphene multiple topological line defects Phys Rev B 87:195445

    Google Scholar 

  39. Chen J-H, Autés G, Alem N, Gargiulo F, Gautam A, Linck M, Kisielowski C, Yazyev OV, Louie SG, Zettl A (2014) Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering Phys Rev B 89:121407(R)

    Google Scholar 

  40. Nguyen VH, Dollfus P, Charlier J-C (2016) Valley Filtering and Electronic Optics Using Polycrystalline Graphene Phys Rev Lett 117:247702

    Google Scholar 

  41. Moldovan D, Ramezani Masir M, Covaci L, Peeters FM (2012) Resonant valley filtering of massive Dirac electrons Phys Rev B 86:115431

    Google Scholar 

  42. Ramezani Masir M, Matulis A, Peeters FM (2011) Scattering of Dirac electrons by circular mass barriers: Valley filter and resonant scattering Phys Rev B 84:245413

    Google Scholar 

  43. Wu Z, Zhai F, Peeters FM, Xu HQ, Chang K (2011) Valley-Dependent Brewster Angles and Goos-Hänchen Effect in Strained Graphene Phys Rev Lett 106:176802

    Google Scholar 

  44. Zhai F, Zhao X, Chang K, Xu HQ (2010) Magnetic barrier on strained graphene: A possible valley filter Phys Rev B 82:115442

    Google Scholar 

  45. Fujita T, Jalil MBA, Tan SG (2010) Valley filter in strain engineered graphene Appl Phys Lett 97:043508

    Google Scholar 

  46. Milovanovic SP, Peeters FM (2016) Strain controlled valley filtering in multi-terminal graphene structures Appl Phys Lett 109:203108

    Google Scholar 

  47. Settnes M, Power SR, Brandbyge M, Jauho A-P (2016) Graphene Nanobubbles as Valley Filters and Beam Splitters Phys Rev Lett 117:276801

    Google Scholar 

  48. Cavalcante LS, Chaves A, da Costa DR, Farias GA, Peeters FM (2016) All-strain based valley filter in graphene nanoribbons using snake states Phys Rev B 94:075432

    Google Scholar 

  49. Carrillo-Bastos R, Leon C, Faria D, Latgé A, Andrei EY, Sandler N (2016) Strained fold-assisted transport in graphene systems Phys Rev B 94:125422

    Google Scholar 

  50. Handschin C, Makk P, Rickhaus P, Maurand R, Watanabe K, Taniguchi T, Richter K, Liu M-H, Schönenberger C (2017) Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene Nano Lett 17:5389

    Google Scholar 

  51. Georgi A, Nemes-Incze P, Carrillo-Bastos R, Faria D, Viola Kusminskiy S, Zhai D, Schneider M, Subramaniam D, Mashoff T, Michael Freitag N, Liebmann M, Pratzer M, Wirtz L, Woods CR, Vladislavovich Gorbachev R, Cao Y, Novoselov KS, Sandler N, Morgenstern M (2017) Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field Nano Lett 17:2240

    Google Scholar 

  52. Pereira VM, Castro Neto AH (2009) Strain Engineering of Graphene’s Electronic Structure Phys Rev Lett 103:046801

    Google Scholar 

  53. Leenaerts O, Partoens B, Peeters FM (2008) Graphene: A perfect nanoballoon Appl Phys Lett 93:193107

    Google Scholar 

  54. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes Science 335:442

    Google Scholar 

  55. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable Atomic Membranes from Graphene Sheets Nano Lett 8:2458

    Google Scholar 

  56. Khestanova E, Guinea F, Fumagalli L, Geim AK, Grigorieva IV (2016) Nat Commun 7:12587

    Article  ADS  Google Scholar 

  57. Yue K, Gao W, Huang R, Liechti KM (2012) Universal shape and pressure inside bubbles appearing in van der Waals heterostructures J Appl Phys 112:083512

    Google Scholar 

  58. Milovanovic SP, Tadić MŽ, Peeters FM (2017) Graphene membrane as a pressure gauge Appl Phys Lett 111:043101

    Google Scholar 

  59. Huang M, Pascal TA, Kim H, Goddard WA, Greer JR (2011) Electronic–Mechanical Coupling in Graphene from in situ Nanoindentation Experiments and Multiscale Atomistic Simulations Nano Lett 11:1241

    Google Scholar 

  60. Zhu S-E, Krishna Ghatkesar M, Zhang C, Janssen GCAM (2013) Graphene based piezoresistive pressure sensor Appl Phys Lett 102:161904

    Google Scholar 

  61. Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, Song YI, Hong BH, Ahn J-H (2010) Wafer-Scale Synthesis and Transfer of Graphene Films Nano Lett 10:490

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Flemish Science Foundation (FWO-Vl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Milovanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milovanović, S.P., Peeters, F.M. (2018). Strained Graphene Structures: From Valleytronics to Pressure Sensing. In: Bonča, J., Kruchinin, S. (eds) Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1304-5_1

Download citation

Publish with us

Policies and ethics