Skip to main content
Log in

The corrosion process of sterling silver exposed to a Na2S solution: monitoring and characterizing the complex surface evolution using a multi-analytical approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Many historical ‘silver’ objects are composed of sterling silver, a silver alloy containing small amounts of copper. Besides the dramatic impact of copper on the corrosion process, the chemical composition of the corrosion layer evolves continuously. The evolution of the surface during the exposure to a Na2S solution was monitored by means of visual observation at macroscopic level, chemical analysis at microscopic level and analysis at the nanoscopic level. The corrosion process starts with the preferential oxidation of copper, forming mixtures of oxides and sulphides while voids are being created beneath the corrosion layer. Only at a later stage, the silver below the corrosion layer is consumed. This results in the formation of jalpaite and at a later stage of acanthite. The acanthite is found inside the corrosion layer at the boundaries of jalpaite grains and as individual grains between the jalpaite grains but also as a thin film on top of the corrosion layer. The corrosion process could be described as a sequence of 5 subsequent surface states with transitions between these states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.A. Scott, Ancient metals: microstructure and metallurgy. In: Copper and Copper Alloys, vol 1 (Conservation Science Press, Los Angeles, 2012), pp. 44–69

  2. L. Selwyn, Metals and Corrosion: A Handbook for the Conservation Professional (Canadian Conservation Institute, Ottawa, 2004), pp. 131–140

    Google Scholar 

  3. V. Costa, Rev. Conserv. 2, 19 (2001)

    Google Scholar 

  4. J.D. Sinclair, J. Electrochem. Soc. 129(1), 33–40 (1982)

    Article  Google Scholar 

  5. T.E. Graedel, J.P. Franey, G.J. Gualtieri, G.W. Kammlott, D.L. Malm, Corros. Sci. 25(12), 1163 (1985)

    Article  Google Scholar 

  6. H.A. Ankersmit, N.H. Tennent, S.F. Watts, Atmos. Environ. 39, 695 (2005)

    Article  ADS  Google Scholar 

  7. ASHRAE, Museums, libraries and archives in 2011 ASHRAE Handbook: Heating, Ventilating, and Air-conditioning Applications, chap. 23 (SI edition, American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc., 2011), pp. 23.1–23.23

  8. M. Watanabe, S. Shinozaki, E. Toyoda, K. Asakura, T. Ichino, N. Kuwaki, Y. Higashi, T. Tanaka, Corrosion 62(3), 243 (2006)

    Article  Google Scholar 

  9. T.E. Graedel, J. Elecrochem. Soc. 139(7), 1963 (1992)

    Article  Google Scholar 

  10. J.P. Franey, G.W. Kammlott, T.E. Graedel, Corros. Sci. 25(2), 133 (1985)

    Article  Google Scholar 

  11. J.P. Franey, Corros. Sci. 23(3), 1 (1983)

    Article  Google Scholar 

  12. H. Kim, Mater. Corros. 54, 243 (2003)

    Article  Google Scholar 

  13. Ch. Kleber, R. Wiesinger, J. Schnöller, U. Hilfrich, H. Hutter, M. Schreiner, Corros. Sci. 50, 1112 (2008)

    Article  Google Scholar 

  14. R. Wiesinger, J. Schnöller, H. Hutter, M. Schreiner, Ch. Kleber, Open Corros. J. 2, 96 (2009)

    Article  Google Scholar 

  15. R. Wiesinger, M. Schreiner, Ch. Kleber, Appl. Surf. Sci. 256, 2735 (2010)

    Article  ADS  Google Scholar 

  16. M.C. Bernard, E. Dauvergne, M. Evesque, M. Keddam, H. Takenouti, Corros. Sci. 47, 663 (2005)

    Article  Google Scholar 

  17. J.I. Lee, S.M. Howard, J.J. Kellar, W. Cross, K.N. Han, Metall. Mater. Trans. B 32B, 895 (2001)

    Article  Google Scholar 

  18. G.W. Vinal, G.N. Schramm, Metal Ind. 22(1), 15 (1924)

    Google Scholar 

  19. A. Lins, N. McMahon, in Thirteenth International Symposium on the Conservation and Restoration of Cultural Property, Tokyo, 4–6 Oct 1989, pp. 135–162

  20. M.G. Dowsett, A. Adriaens, M. Soares, H. Wouters, V.V.N. Palitsin, R. Gibbons, R.J.H. Morris, Nucl. Instrum. Methods Phys. Res. Sect. B 239, 51–64 (2005)

    Article  ADS  Google Scholar 

  21. I.D. MacLeod, Stud. Conserv. 36(4), 222–234 (1991)

    Google Scholar 

  22. S. Capelo, P.M. Homem, J. Cavalheiro, I.T.E. Fonseca, J. Solid State Electrochem. 17, 223–234 (2013)

    Article  Google Scholar 

  23. N. Salvado, S. Buti, A. Labrador, G. Cinque, H. Emerich, T. Pradell, Anal. Bioanal. Chem. 399, 3041–3052 (2011)

    Article  Google Scholar 

  24. C.J. Raub, R.D. Blumer, in Metal95: Proceedings of the International Conference on Metals Conservation, James and James, London, Semur-en-Auxois, 1997, 25–28 Sept 1995 pp. 67–70

  25. G.M. Ingo, S. Balbi, T. De Caro, I. Fragala, E. Angelini, G. Bultrini, Appl. Phys. A 83, 493–497 (2006)

    Article  ADS  Google Scholar 

  26. E. Angelini, T. de Caro, A. Mezzi, C. Riccucci, F. Faraldi, S. Grassini, Surf. Interface Anal. 44, 947–952 (2012)

    Article  Google Scholar 

  27. P. Storme, O. Schalm, R. Wiesinger, Herit. Sci. (2015). doi:10.1186/s40494-015-0054-1

    Google Scholar 

  28. W. Van Laer, Weg-Wyzer voor aankoomende Gouden Zilversmeeden (In Dutch) (1725, Reprinted by De Tijdstroom, Lochem, Amsterdam, 1967)

  29. J. Hammes, Goud Zilver Edelstenen (In Dutch) (De Technische Boekhandel H. Stam, Amsterdam, 1943)

    Google Scholar 

  30. G. Wharton, S.L. Maish, W.S. Ginell, JAIC 29(1), 13–32 (1990)

    Google Scholar 

  31. Norm NBN EN ISO 8891:2000

  32. CIE DS 014-4.3/E:2007

  33. ASTM standard B825-02

  34. H. Sone, T. Tamura, K. Miyazaki, S. Hosaka, Microelectron. Eng. 83(4–9), 1487–1490 (2006)

    Article  Google Scholar 

  35. M. Dapor, Monte Carlo simulation of backscattered electrons and energy from thick targets and surface films. Phys. Rev. B 46(2), 619–625 (1992)

    Article  ADS  Google Scholar 

  36. C.A. Anderson, M.F. Hasler, in X-ray Optics and Microanalysis, Fourth International Congress on X-ray Optics and Microanalysis, Orsay, 1965, eds. by R. Castaing, P. Deschamps, K. Philibert (Herman, Paris, 1966), p. 310

  37. S. Nikitenko, A.M. Beale, A.M. van der Eerden, S.D. Jacques, O. Leynaud, M.G. O’Brien, D. Detollenaere, R. Kaptein, B.M. Weckhuysen, W.J. Bras, Synchrotron Radiat. 15, 632–640 (2008)

    Article  Google Scholar 

  38. S. Bals, W. Tirry, R. Geurts, Z. Yang, D. Schryvers, Microsc. Microanal. 13(2), 80–86 (2007)

    Article  ADS  Google Scholar 

  39. D.M. Trots, A. Senyshyn, D.A. Mikhailova, T. Vad, H. Fuess, J. Phys. Condens. Matter 20(45), 455204 (2008)

    Article  ADS  Google Scholar 

  40. O. Schalm, P. Storme, Microsc. Anal. 20, 10–15 (2015)

    Google Scholar 

  41. S. Licht, J. Electrochem. Soc. 135(12), 2971–2975 (1988)

    Article  Google Scholar 

  42. T.T.M. Tran, C. Fiaud, E.M.M. Sutter, A. Villanova, Corros. Sci. 45, 2787–2802 (2003)

    Article  Google Scholar 

  43. T.T.M. Tran, C. Fiaud, E.M.M. Sutter, Corros. Sci. 47, 1724–1737 (2005)

    Article  Google Scholar 

  44. A. Kutzelnigg, Kolloid Z. 61, 48–50 (1932)

    Article  Google Scholar 

  45. M.S. Barger, W.B. White, The Daguerreotype: Nineteenth-century Technology and Modern Science (Smithsonian Institution, Washington, 1991), p. 162

    Google Scholar 

  46. H.A. Ankersmit, A. Domenech Carbo, N.H. Tennent, in Metal 2001: Proceedings of the ICOM Committee for Conservation Metals Working Group (2001), pp. 157–166

  47. J. Somekh, M. Choder, D. Dori, M. Choder, PLoS One 7(12), e51430 (2012)

    Article  ADS  Google Scholar 

  48. J. Somekh, G. Haimovich, A. Guterman, D. Dori, M., Choder. PLoS One 9(9), e107085 (2014)

    Article  ADS  Google Scholar 

  49. J.H. Payer, G. Ball, B.I. Rickett, H.S. Kim, Mater. Sci. Eng. A 198, 91–102 (1995)

    Article  Google Scholar 

  50. R. Van Langh, H.A. Ankersmit, I. Joosten, in Proceedings of Metal 2004, National Museum of Australia Canberra ACT, 4–8 Oct 2004, pp. 137–141

  51. R. Linke, M. Schreiner, G. Demortier, M. Alram, X-Ray Spectrom. 32, 373–380 (2003)

    Article  Google Scholar 

  52. R. Linke, M. Schreiner, G. Demortier, Nucl. Instrum. Methods Phys. Res. Sect. B 226, 172–178 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the EU-FP7 Grant PANNA No. 282998 and for the opportunity to perform SR-XPS measurements at the NanoESCA beamline of the Elettra storage ring, under the approval of the advisory Committee (Proposal No. 20135164), as well as the opportunity to perform XANES measurements at the DUBBLE beamline of the ESRF storage ring (Proposal No. 26-01-990). The authors are grateful for the financial support by the STIMPRO Project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. Grant of the Agency for Innovation by Science and Technology (IWT). We would also like to thank Peter Van den Haute for the XRD measurements that were performed at the University of Ghent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Schalm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schalm, O., Crabbé, A., Storme, P. et al. The corrosion process of sterling silver exposed to a Na2S solution: monitoring and characterizing the complex surface evolution using a multi-analytical approach. Appl. Phys. A 122, 903 (2016). https://doi.org/10.1007/s00339-016-0436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0436-6

Keywords

Navigation