Skip to main content
Log in

Unlocking the full power of electrochemical fingerprinting for on-site sensing applications

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical sensing for the semi-quantitative detection of biomarkers, drugs, environmental contaminants, food additives, etc. shows promising results in point-of-care diagnostics and on-site monitoring. More specifically, electrochemical fingerprint (EF)–based sensing strategies are considered an inviting approach for the on-site detection of low molecular weight molecules. The fast growth of electrochemical sensors requires defining the concept of direct electrochemical fingerprinting in sensing. The EF can be defined as the unique electrochemical signal or pattern, mostly recorded by voltammetric techniques, specific for a certain molecule that can be used for its quantitative or semi-quantitative identification in a given analytical context with specified circumstances. The performance of EF-based sensors can be enhanced by considering multiple features of the signal (i.e., oxidation or reduction patterns), in combination with statistical data analysis or sample pretreatments or by including electrode surface modifiers to enrich the EF. In this manuscript, some examples of EF-based sensors, strategies to improve their performances, and open challenges are discussed to unlock the full power of electrochemical fingerprinting for on-site sensing applications.

Electrochemical fingerprint–based sensing strategies can be used for the detection of electroactive analytes, such as antibiotics, phenolic compounds, and drugs of abuse. These strategies show selective and sensitive responses and are easily combined with portable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: analytical approach. TrAC Trends Anal Chem. 2019;119:115609.

    CAS  Google Scholar 

  2. Luo J, Liang D, Qiu X, Yang M. Photoelectrochemical detection of breast cancer biomarker based on hexagonal carbon nitride tubes. Anal Bioanal Chem. 2019;411:6889–97.

    CAS  PubMed  Google Scholar 

  3. Moon J-M, Thapliyal N, Hussain KK, Goyal RN, Shim Y-B. Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioelectron. 2018;102:540–52.

    CAS  PubMed  Google Scholar 

  4. Florea A, de Jong M, De Wael K. Electrochemical strategies for the detection of forensic drugs. Curr Opin Electrochem. 2018;11:34–40.

    CAS  Google Scholar 

  5. Lima HRS, da Silva JS, de Oliveira Farias EA, Teixeira PRS, Eiras C, Nunes LCC. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens Bioelectron. 2018;108:27–37.

    CAS  PubMed  Google Scholar 

  6. Rapini R, Marrazza G. Electrochemical aptasensors for contaminants detection in food and environment: recent advances. Bioelectrochemistry. 2017;118:47–61.

    CAS  PubMed  Google Scholar 

  7. Felix FS, Angnes L. Electrochemical immunosensors – a powerful tool for analytical applications. Biosens Bioelectron. 2018;102:470–8.

    CAS  PubMed  Google Scholar 

  8. Li Y, Wang Z, Sun L, Liu L, Xu C, Kuang H. Nanoparticle-based sensors for food contaminants. TrAC Trends Anal Chem. 2019;113:74–83.

    Google Scholar 

  9. Cao Y, Feng T, Xu J, Xue C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens Bioelectron. 2019;141:111447.

    CAS  PubMed  Google Scholar 

  10. Ferreira PC, Ataíde VN, Silva Chagas CL, Angnes L, Tomazelli Coltro WK, Longo Cesar Paixão TR, et al. Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends Anal Chem. 2019;119:115622.

    CAS  Google Scholar 

  11. Huang A, Li H, Xu D. An on-chip electrochemical sensor by integrating ITO three-electrode with low-volume cell for on-line determination of trace Hg(II). J Electroanal Chem. 2019;848:113189.

    CAS  Google Scholar 

  12. Berto S, Carena L, Chiavazza E, Marletti M, Fin A, Giacomino A, et al. Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor. Chemosphere. 2018;204:556–62.

    CAS  PubMed  Google Scholar 

  13. McCabe MM, Hala P, Rojas-Pena A, Lautner-Csorba O, Major TC, Ren H, et al. Enhancing analytical accuracy of intravascular electrochemical oxygen sensors via nitric oxide release using S-nitroso-N-acetyl-penicillamine (SNAP) impregnated catheter tubing. Talanta. 2019;205:120077.

    CAS  PubMed  Google Scholar 

  14. Li H, Wang C, Wang X, Hou P, Luo B, Song P, et al. Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings. Biosens Bioelectron. 2019;126:193–9.

    CAS  PubMed  Google Scholar 

  15. Moro G, De Wael K, Moretto LM. Challenges in the electrochemical (bio)sensing of nonelectroactive food and environmental contaminants. Curr Opin Electrochem. 2019;16:57–65.

    CAS  Google Scholar 

  16. Sleegers N, Van Nuijs ALN, Van Den Berg M, De Wael K. Cephalosporin antibiotics: electrochemical fingerprints and core structure reactions investigated by LC-MS/MS. Anal Chem. 2019;91:2035–41.

    CAS  PubMed  Google Scholar 

  17. Mohan AMV, Brunetti B, Bulbarello A, Wang J. Electrochemical signatures of multivitamin mixtures. Analyst. 2015;140:7522–6.

    CAS  PubMed  Google Scholar 

  18. Carvalhal RF, Freire RS, Kubota LT. Polycrystalline gold electrodes: a comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation. Electroanalysis. 2005;17:1251–9.

    CAS  Google Scholar 

  19. Scholz F. Voltammetric techniques of analysis: the essentials. ChemTexts. 2015;1:1–24.

    CAS  Google Scholar 

  20. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A practical beginner’s guide to cyclic voltammetry. J Chem Educ. 2018;95:197–206.

    CAS  Google Scholar 

  21. Tanuja SB, Kumara Swamy BE, Pai KV. Electrochemical determination of paracetamol in presence of folic acid at nevirapine modified carbon paste electrode: a cyclic voltammetric study. J Electroanal Chem. 2017;798:17–23.

    CAS  Google Scholar 

  22. Scattolin T, Moro G, Rizzolio F, Santo C, Moretto LM, Visentin F. Improved synthesis, anticancer activity and electrochemical characterization of unusual zwitterionic palladium compounds with a ten-term coordinative ring. Chem Sel. 2019;4:10911–9.

    CAS  Google Scholar 

  23. Xue Z, Dong Y, Ma J, Wang Y, Zhu W. Synthesis, characterization and electrochemistry of dipyrrinato nickel(II) complexes with different aromatic rings to meso-position. Polyhedron. 2017;127:287–92.

  24. Neven L, Shanmugam ST, Rahemi V, Trashin S, Sleegers N, Carrión EN, et al. Optimized photoelectrochemical detection of essential drugs bearing phenolic groups. Anal Chem. 2019;91:9962–9.

    CAS  PubMed  Google Scholar 

  25. Čižmek L, Komorsky-Lovrić Š. Electrochemistry as a screening method in determination of carotenoids in crustacean samples used in everyday diet. Food Chem. 2020;309:125706.

    PubMed  Google Scholar 

  26. Yu HA, DeTata DA, Lewis SW, Silvester DS. Recent developments in the electrochemical detection of explosives: towards field-deployable devices for forensic science. TrAC - Trends Anal Chem. 2017;97:374–84.

    CAS  Google Scholar 

  27. Bonazza G, Tartaggia S, Toffoli G, Polo F, Daniele S. Voltammetric behaviour of the anticancer drug irinotecan and its metabolites in acetonitrile. Implications for electrochemical therapeutic drug monitoring. Electrochim Acta. 2018;289:483–93.

    CAS  Google Scholar 

  28. Puthongkham P, Venton BJ. Recent advances in fast-scan cyclic voltammetry. Analyst. 2020;145:1087–102.

    CAS  PubMed  Google Scholar 

  29. Kounaves SP. Voltammetric techniques. Inorg Electrochem. 2007:49–136. https://doi.org/10.1039/9781847551146-00049.

  30. Skalová Š, Langmaier J, Barek J, Vyskočil V, Navrátil T. Doxorubicin determination using two novel voltammetric approaches: a comparative study. Electrochim Acta. 2020;330:1–8.

    Google Scholar 

  31. Mirceski V, Skrzypek S, Stojanov L. Square-wave voltammetry. ChemTexts. 2018;4:1–14.

    Google Scholar 

  32. Laborda E, Molina A, Li Q, Batchelor-Mcauley C, Compton RG. Square wave voltammetry at disc microelectrodes for characterization of two electron redox processes. Phys Chem Chem Phys. 2012;14:8319–27.

    CAS  PubMed  Google Scholar 

  33. Moro G, Bottari F, Sleegers N, Florea A, Cowen T, Moretto LM, et al. Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: the case of cefquinome. Sensors Actuators B Chem. 2019;297:126786.

    CAS  Google Scholar 

  34. Fu L, Zheng Y, Zhang P, Zhang H, Zhuang W, Zhang H, et al. Enhanced electrochemical voltammetric fingerprints for plant taxonomic sensing. Biosens Bioelectron. 2018;120:102–7.

    CAS  PubMed  Google Scholar 

  35. Morawska K, Festinger N, Chwatko G, Głowacki R, Ciesielski W. Rapid electroanalytical procedure for sesamol determination in real samples. Food Chem. 2020;309:125789.

    CAS  PubMed  Google Scholar 

  36. Cheng TS, Nasir MZM, Ambrosi A, Pumera M. 3D-printed metal electrodes for electrochemical detection of phenols. Appl Mater Today. 2017;9:212–9.

    Google Scholar 

  37. Yokus OA, Kardas F, Akyıldırım O, Eren T, Atar N, Yola ML. Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sensors Actuators B Chem. 2016;233:47–54.

    CAS  Google Scholar 

  38. Dettlaff A, Jakóbczyk P, Ficek M, Wilk B, Szala M, Wojtas J, et al. Electrochemical determination of nitroaromatic explosives at boron-doped trinitroanisole in liquid effluents. J Hazard Mater. 2020;387:121672.

    CAS  PubMed  Google Scholar 

  39. Betancourth JM, Cuellar M, Ortiz PI, Pfaffen V. Multivariate cathodic square wave stripping voltammetry optimization for nitro group compounds determination using antimony film electrodes. Microchem J. 2018;139:139–49.

    CAS  Google Scholar 

  40. Bia G, Borgnino L, Ortiz PI, Pfaffen V. Multivariate optimization of square wave voltammetry using bismuth film electrode to determine atrazine. Sensors Actuators B Chem. 2014;203:396–405.

    CAS  Google Scholar 

  41. Ferreira SLC, dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM. Doehlert matrix: a chemometric tool for analytical chemistry – review. Talanta. 2004;63:1061–7.

    CAS  PubMed  Google Scholar 

  42. Scheel GL, de Oliveira FM, de Oliveira LLG, Medeiros RA, Nascentes CC, Tarley CRT. Feasibility study of ethylone determination in seized samples using boron-doped diamond electrode associated with solid phase extraction. Sensors Actuators B Chem. 2018;259:1113–22.

    CAS  Google Scholar 

  43. Garcia Cardozo C, Melo Cardoso R, Matheus Guimarães Selva T, Evaristo de Carvalho A, Torres Pio dos Santos W, Regis Longo Cesar Paixão T, et al. Batch injection analysis-multiple pulse amperometric fingerprint: a simple approach for fast on-site screening of drugs. Electroanalysis. 2017;29:2847–54.

    CAS  Google Scholar 

  44. Brown JH. Electrochemical reduction of terbuthylazine under acidic conditions and structural determination of post-electrolysis product with the aid of GC/MS, IR, and 1H NMR spectroscopy. J Electroanal Chem. 2018;809:125–9.

    CAS  Google Scholar 

  45. Brito RE, Capote FP, Escobar CAL, Montoya MR, Mellado JMR. Electrochemical oxidation pathways of hydroxycoumarins on carbon electrodes examined by LSCV and LC–MS/MS. J Electrochem Soc. 2019;166:H331–5.

    CAS  Google Scholar 

  46. Feier B, Blidar A, Vlase L, Cristea C. The complex fingerprint of vancomycin using electrochemical methods and mass spectrometry. Electrochem Commun. 2019;104:106474.

    CAS  Google Scholar 

  47. Klouda J, Barek J, Kočovský P, Herl T, Matysik FM, Nesměrák K, et al. Bile acids: electrochemical oxidation on bare electrodes after acid-induced dehydration. Electrochem Commun. 2018;86:99–103.

    CAS  Google Scholar 

  48. Sokolová R, Tarábek J, Papoušková B, Kocábová J, Fiedler J, Vacek J, et al. Oxidation of the flavonolignan silybin. In situ EPR evidence of the spin-trapped silybin radical. Electrochim Acta. 2016;205:118–23.

    Google Scholar 

  49. Lourencao BC, Silva TA, da Silva Santos M, Ferreira AG, Fatibello-Filho O. Sensitive voltammetric determination of hydroxyzine and its main metabolite cetirizine and identification of oxidation products by nuclear magnetic resonance spectroscopy. J Electroanal Chem. 2017;807:187–95.

    CAS  Google Scholar 

  50. Mersal GAM, Adam AMA, Hassan RF, Refat MS. Spectral and cyclic voltammetric studies of glyceryl guaiacolate drug in pure form and in situ chelation with some different transition metals. J Mol Liq. 2017;237:128–40.

    CAS  Google Scholar 

  51. Carlier M, Stove V, Wallis SC, De Waele JJ, Verstraete AG, Lipman J, et al. Assays for therapeutic drug monitoring of β-lactam antibiotics: a structured review. Int J Antimicrob Agents. 2015;46:367–75.

    CAS  PubMed  Google Scholar 

  52. Roberts JG, Voinov MA, Schmidt AC, Smirnova TI. The hydroxyl radical is a critical intermediate in the voltammetric detection of hydrogen peroxide. J Am Chem Soc. 2016;138:2516–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dronova M, Smolianitski E, Lev O, Dronova M, Smolianitski E, Lev O. Electrooxidation of new synthetic cannabinoids: voltammetric determination of drugs in seized street samples and artificial saliva. Anal Chem. 2016;88:4487–94.

  54. Freitas JM, Ramos DLO, Sousa RMF, Paixão TRLC, Santana MHP, Muñoz RAA, et al. A portable electrochemical method for cocaine quantification and rapid screening of common adulterants in seized samples. Sensors Actuators B Chem. 2017;243:557–65.

    CAS  Google Scholar 

  55. Álvarez-Martos I, Ferapontova EE. “Negative electrocatalysis”-based specific analysis of dopamine at basal plane HOPG in the presence of structurally related catecholamines. Electrochem Commun. 2018;89:48–51.

    Google Scholar 

  56. Álvarez-Martos I, Ferapontova EE. Electrocatalytic discrimination between dopamine and norepinephrine at graphite and basal plane HOPG electrodes. Electroanalysis. 2018;30:1082–90.

    Google Scholar 

  57. Glavaški OS, Petrović SD, Mijin D, Jovanović MB, Dugandžić AM, Zeremski TM, et al. Electrochemical degradation of the pesticide dimethenamid-P at gold, DSA platinum and ruthenium oxide electrodes in different electrolytes. Electroanalysis. 2014;26:1877–80.

    Google Scholar 

  58. Meyler REP, Edwards MA, Macpherson JV. Exploring the suitability of different electrode materials for hypochlorite quantification at high concentration in alkaline solutions. Electrochem Commun. 2018;86:21–5.

    CAS  Google Scholar 

  59. Cheuquepán W, Martínez-Olivares J, Rodes A, Orts JM. Squaric acid adsorption and oxidation at gold and platinum electrodes. J Electroanal Chem. 2018;819:178–86.

    Google Scholar 

  60. Wegiel K, Bas B. Voltammetric characteristics and determination of riboflavin at the different metallic bulk annular band electrodes. J Electrochem Soc. 2018;165:H393–8.

    CAS  Google Scholar 

  61. Niedziałkowski P, Cebula Z, Malinowska N, Białobrzeska W, Sobaszek M, Ficek M, et al. Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls. Biosens Bioelectron. 2019;126:308–14.

    PubMed  Google Scholar 

  62. Peltola E, Sainio S, Holt KB, Palomäki T, Koskinen J, Laurila T. Electrochemical fouling of dopamine and recovery of carbon electrodes. Anal Chem. 2018;90:1408–16.

    CAS  PubMed  Google Scholar 

  63. Arceo-Gómez DE, Reyes-Trujeque J, Zambrano-Rengel GE, Pérez-López T, Orozco-Cruz R. Electrochemical characterization of patinas formed on a historic bell from the Cathedral Museum of Campeche-México, World Heritage Site. Int J Electrochem Sci. 2016;11:9379–93.

    Google Scholar 

  64. De Jong M, Florea A, De Vries AM, Van Nuijs ALN, Covaci A, Van Durme F, et al. Levamisole: a common adulterant in cocaine street samples hindering electrochemical detection of cocaine. Anal Chem. 2018;90:5290–7.

    PubMed  Google Scholar 

  65. Karakaya S, Giray D. Low-cost determination of cetirizine by square wave voltammetry in a disposable electrode. Monatshefte für Chemie - Chem Mon. 2019;150:1003–10.

    CAS  Google Scholar 

  66. Karikalan N, Karthik R, Chen S, Velmurugan M, Karuppiah C. Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications. J Colloid Interface Sci. 2016;483:109–17.

    CAS  PubMed  Google Scholar 

  67. Cumba LR, Smith JP, Zuway KY, Sutcliffe OB, do Carmo DR, Banks CE. Forensic electrochemistry: simultaneous voltammetric detection of MDMA and its fatal. Anal Methods. 2016;8:142–52.

    CAS  Google Scholar 

  68. Florea A, Schram J, De Jong M, Eliaerts J, Van Durme F, Kaur B, et al. Electrochemical strategies for adulterated heroin samples. Anal Chem. 2019;91:7920–8.

    CAS  PubMed  Google Scholar 

  69. Trouillon R, Einaga Y, Gijs MAM. Cathodic pretreatment improves the resistance of boron-doped diamond electrodes to dopamine fouling. Electrochem Commun. 2014;47:92–5.

    CAS  Google Scholar 

  70. Chebotarev A, Pliuta K, Koicheva A, Snigur D. Determination of levodopa in pharmaceuticals using a disposable electrochemically activated carbon-paste electrode by linear sweep voltammetry. Anal Lett. 2017;2719:1520–8.

    Google Scholar 

  71. Oiye ÉN, Midori J, Katayama T, Fernanda M, Ribeiro M, De Oliveira MF. Electrochemical analysis of 25H-NBOMe by square wave voltammetry. Forensic Chem. 2017;5:86–90

  72. De Jong M, Sleegers N, Kim J, Van Durme F, Samyn N, Wang J, et al. Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders. Chem Sci. 2016;7:2364–70.

    PubMed  PubMed Central  Google Scholar 

  73. Deiminiat B, Rounaghi GH, Arbab-zavar MH. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol – gel and multiwall carbon nanotubes for determination of tramadol. Sensors Actuators B Chem. 2017;238:651–9.

    CAS  Google Scholar 

  74. Bottari F, Moro G, Sleegers N, Florea A, Cowen T, Piletsky S, et al. Electropolymerized o-phenylenediamine on graphite promoting the electrochemical detection of nafcillin. Electroanalysis. 2020;32:135–41.

    CAS  Google Scholar 

  75. Qader B, Baron M, Hussain I, Sevilla JM, Johnson RP, Gonzalez-Rodriguez J. Electrochemical determination of disulfoton using a molecularly imprinted poly-phenol polymer. Electrochim Acta. 2019;295:333–9.

    CAS  Google Scholar 

  76. Mousavi Nodoushan S, Nasirizadeh N, Amani J, Halabian R, Imani Fooladi AA. An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens Bioelectron. 2019;127:221–8.

    CAS  PubMed  Google Scholar 

  77. Hassan AHA, Sappia L, Moura SL, FHM A, Moselhy WA, del Sotomayor M PT, et al. Biomimetic magnetic sensor for electrochemical determination of scombrotoxin in fish. Talanta. 2019;194:997–1004.

    CAS  PubMed  Google Scholar 

  78. Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron. 2018;103:113–29.

    CAS  PubMed  Google Scholar 

  79. Regiart M, Escudero LA, Aranda P, Martinez NA, Bertolino FA, Raba J. Copper nanoparticles applied to the preconcentration and electrochemical determination of β-adrenergic agonist: an efficient tool for the control of meat production. Talanta. 2015;135:138–44.

    CAS  PubMed  Google Scholar 

  80. Veerapandian M, Seo YT, Yun K, Lee MH. Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin. Biosens Bioelectron. 2014;58:200–4.

    CAS  PubMed  Google Scholar 

  81. Anithaa AC, Lavanya N, Asokan K, Sekar C. WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim Acta. 2015;167:294–302. https://doi.org/10.1016/j.electacta.2015.03.160.

    Article  CAS  Google Scholar 

  82. Posha B, Kuttoth H, Sandhyarani N. 1-Pyrene carboxylic acid functionalized carbon nanotube-gold nanoparticle nanocomposite for electrochemical sensing of dopamine and uric acid. Microchim Acta. 2019;186:1–11.

    Google Scholar 

  83. Puthongkham P, Venton BJ. Nanodiamond coating improves the sensitivity and antifouling properties of carbon fiber microelectrodes. ACS Sensors. 2019;4:2403–11.

    CAS  PubMed  Google Scholar 

  84. Sha R, Puttapati SK, Srikanth VVSS, Badhulika S. Ultra-sensitive phenol sensor based on overcoming surface fouling of reduced graphene oxide-zinc oxide composite electrode. J Electroanal Chem. 2017;785:26–32.

    CAS  Google Scholar 

  85. Liu J, Weng W, Yin C, Li X, Niu Y, Li G, et al. A sensitive electrochemical sensor for detection of rutin based on a gold nanocage-modified electrode. J Chin Chem Soc. 2019;66:1336–40.

    CAS  Google Scholar 

  86. Rezaei B, Khosropour H, Ensafi AA. A modified electrode using carboxylated multiwalled carbon nanotubes and 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ionic liquid for a simultaneous hazardous textile dye sensor. Anal Methods. 2017;9:267–75.

    CAS  Google Scholar 

  87. Istrate OM, Rotariu L, Marinescu VE, Bala C. NADH sensing platform based on electrochemically generated reduced graphene oxide-gold nanoparticles composite stabilized with poly(allylamine hydrochloride). Sensors Actuators B Chem. 2016;223:697–704.

    CAS  Google Scholar 

  88. Moro G, Bottari F, Van Loon J, Du Bois E, De Wael K, Moretto LM. Disposable electrodes from waste materials and renewable sources for (bio)electroanalytical applications. Biosens Bioelectron. 2019;146:111758.

    CAS  PubMed  Google Scholar 

  89. Tertis M, Leva PI, Bogdan D, Suciu M, Graur F, Cristea C. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens Bioelectron. 2019;137:123–32.

    CAS  PubMed  Google Scholar 

  90. Trindade EKG, Silva BVM, Dutra RF. A probeless and label-free electrochemical immunosensor for cystatin C detection based on ferrocene functionalized-graphene platform. Biosens Bioelectron. 2019;138:111311.

    CAS  PubMed  Google Scholar 

  91. Villalonga A, Pérez-Calabuig AM, Villalonga R. Electrochemical biosensors based on nucleic acid aptamers. Anal Bioanal Chem. 2020;412:55–72.

    CAS  PubMed  Google Scholar 

  92. Yang Y, Jiang M, Cao K, Wu M, Zhao C, Li H, et al. An electrochemical immunosensor for CEA detection based on Au-Ag/rGO@PDA nanocomposites as integrated double signal amplification strategy. Microchem J. 2019;151:104223.

    Google Scholar 

  93. Zhang Q, Fan G, Chen W, Liu Q, Zhang X, Zhang X, et al. Electrochemical sandwich-type thrombin aptasensor based on dual signal amplification strategy of silver nanowires and hollow Au–CeO2. Biosens Bioelectron. 2019;150:111846.

    PubMed  Google Scholar 

  94. Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ. Perspective on the future role of aptamers in analytical chemistry. Anal Chem. 2019;91:15335–44.

    CAS  PubMed  Google Scholar 

  95. Wang L, Peng X, Fu H, Huang C, Li Y, Liu Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens Bioelectron. 2020;147:111777.

    CAS  PubMed  Google Scholar 

  96. Bottari F, Blust R, De Wael K. Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics. Curr Opin Electrochem. 2018;10:136–42.

    CAS  Google Scholar 

  97. Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: a review. Anal Chim Acta. 2019;1051:1–23.

    CAS  PubMed  Google Scholar 

  98. Taheri RA, Eskandari K, Negahdary M. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem J. 2018;143:243–51.

    CAS  Google Scholar 

  99. Zhu Y, Zhou C, Yan X, Yan Y, Wang Q. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Anal Chim Acta. 2015;883:81–9.

    CAS  PubMed  Google Scholar 

  100. Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Van Vlierberghe S, Blust R, et al. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors Actuators B Chem. 2017;240:1024–35.

    CAS  Google Scholar 

  101. Dehdashtian S, Shamsipur M, Gholivand MB. Fabrication of a novel electrochemical sensor based on an electrosynthesized indolyldihydroxyquinone as a bio-based modifier for sensitive and selective direct electrochemical determination of tryptophan. J Electroanal Chem. 2016;780:119–25.

    CAS  Google Scholar 

  102. Wei B, Zhong H, Wang L, Liu Y, Xu Y, Zhang J, et al. Facile preparation of a collagen-graphene oxide composite: a sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. Int J Biol Macromol. 2019;135:400–6.

    CAS  PubMed  Google Scholar 

  103. Chen T, Tang L, Yang F, Zhao Q, Jin X, Ning Y, et al. Electrochemical determination of dopamine by a reduced graphene oxide–gold nanoparticle-modified glassy carbon electrode. Anal Lett. 2016;49:2223–33.

    CAS  Google Scholar 

  104. Yadav SK, Agrawal B, Chandra P, Goyal RN. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens Bioelectron. 2014;55:337–42.

    CAS  PubMed  Google Scholar 

  105. Koteshwara Reddy K, Satyanarayana M, Yugender Goud K, Vengatajalabathy Gobi K, Kim H. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine. Mater Sci Eng C. 2017;79:93–9.

    CAS  Google Scholar 

  106. Zong C, Liu J. The arsenic-binding aptamer cannot bind arsenic: critical evaluation of aptamer selection and binding. Anal Chem. 2019;91:10887–93.

    CAS  PubMed  Google Scholar 

  107. Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors – a review. Anal Chim Acta. 2016;936:62–74.

    CAS  PubMed  Google Scholar 

  108. Naveen MH, Gurudatt NG, Shim YB. Applications of conducting polymer composites to electrochemical sensors: a review. Appl Mater Today. 2017;9:419–33.

    Google Scholar 

  109. Bates F, Cela-Pérez MC, Karim K, Piletsky S, López-Vilariño JM. Virtual screening of receptor sites for molecularly imprinted polymers. Macromol Biosci. 2016;16:1170–4.

    CAS  PubMed  Google Scholar 

  110. Wackerlig J, Lieberzeit PA. Molecularly imprinted polymer nanoparticles in chemical sensing - synthesis, characterisation and application. Sensors Actuators B Chem. 2015;207:144–57.

    CAS  Google Scholar 

  111. Tertiș M, Cernat A, Lacatiș D, Florea A, Bogdan D, Suciu M, et al. Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem Commun. 2017;75:43–7.

    Google Scholar 

  112. Palladino P, Bettazzi F, Scarano S. Polydopamine: surface coating, molecular imprinting, and electrochemistry–successful applications and future perspectives in (bio)analysis. Anal Bioanal Chem. 2019;411:4327–38.

    CAS  PubMed  Google Scholar 

  113. Hassan AHA, Lima S, Ali FHM, Moselhy WA, Taboada P, Isabel M. Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens Bioelectron. 2018;118:181–7.

    CAS  PubMed  Google Scholar 

  114. Liu F, Kan X. Conductive imprinted electrochemical sensor for epinephrine sensitive detection and double recognition. J Electroanal Chem. 2019;836:182–9.

    CAS  Google Scholar 

  115. Douhaya YV, Barkaline VV, Tsakalof A. Computer-simulation-based selection of optimal monomer for imprinting of tri-O-acetyl adenosine in a polymer matrix: calculations for benzene solution. J Mol Model. 2016;22:1–8.

    CAS  Google Scholar 

  116. Dai Z, Liu J, Tang S, Wang Y, Wang Y, Jin R. Optimization of enrofloxacin-imprinted polymers by computer-aided design. J Mol Model. 2015;21:290.

    PubMed  Google Scholar 

  117. Benedetti B, Di Carro M, Magi E. Multivariate optimization of an extraction procedure based on magnetic molecular imprinted polymer for the determination of polycyclic aromatic hydrocarbons in sea water. Microchem J. 2019;145:1199–206.

    CAS  Google Scholar 

  118. Busato M, Distefano R, Bates F, Karim K, Bossi AM, López Vilariño JM, et al. MIRATE: MIps RATional dEsign science gateway. J Integr Bioinform. 2018;15:1–6.

    Google Scholar 

  119. Florea A, Cowen T, Piletsky S, De Wael K. Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst. 2019;144:4639–46.

    CAS  PubMed  Google Scholar 

  120. Li Y, Zhang L, Dang Y, Chen Z, Zhang R, Li Y, et al. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens Bioelectron. 2019;127:207–14.

    CAS  PubMed  Google Scholar 

  121. Alizadeh T, Atashi F, Akhoundian M, Ganjali MR. Highly selective extraction and voltammetric determination of the opioid drug buprenorphine via a carbon paste electrode impregnated with nano-sized molecularly imprinted polymer. Microchim Acta. 2019;186:6–13.

    Google Scholar 

  122. Fu L, Wu M, Zheng Y, Zhang P, Ye C, Zhang H, et al. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. Sensors Actuators B Chem. 2019;298:126836.

    CAS  Google Scholar 

  123. Esteban M, Ariño C, Díaz-Cruz JM. Chemometrics in electrochemistry. Compr Chemom. 2009;4:425–58.

    CAS  Google Scholar 

  124. Jalalvand AR, Roushani M, Goicoechea HC, Rutledge DN, Gu HW. MATLAB in electrochemistry: a review. Talanta. 2019;194:205–25.

    CAS  PubMed  Google Scholar 

  125. Cetó X, Apetrei C, Del Valle M, Rodríguez-Méndez ML. Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array. Electrochim Acta. 2014;120:180–6.

    Google Scholar 

  126. Pascual L, Gras M, Vidal-Brotóns D, Alcañiz M, Martínez-Máñez R, Ros-Lis JV. A voltammetric e-tongue tool for the emulation of the sensorial analysis and the discrimination of vegetal milks. Sensors Actuators B Chem. 2018;270:231–8.

    CAS  Google Scholar 

  127. Yin T, Guo T, Ma Z, Wang Z, Sun X, Li C. Classification of wolfberry with different geographical origins by using voltammetric electronic tongue. IFAC-PapersOnLine. 2018;51:654–9.

    Google Scholar 

  128. Wei Z, Wang J. Tracing floral and geographical origins of honeys by potentiometric and voltammetric electronic tongue. Comput Electron Agric. 2014;108:112–22.

    Google Scholar 

  129. Jalalvand AR, Goicoechea HC. Applications of electrochemical data analysis by multivariate curve resolution-alternating least squares. TrAC - Trends Anal Chem. 2017;88:134–66.

    CAS  Google Scholar 

  130. Khoobi A, Ghoreishi SM, Behpour M, Masoum S. Three-dimensional voltammetry: a chemometrical analysis of electrochemical data for determination of dopamine in the presence of unexpected interference by a biosensor based on gold nanoparticles. Anal Chem. 2014;86:8967–73.

    CAS  PubMed  Google Scholar 

  131. Ghoreishi SM, Khoobi A, Behpour M, Masoum S. Application of multivariate curve resolution alternating least squares to biomedical analysis using electrochemical techniques at a nanostructure-based modified sensor. Electrochim Acta. 2014;130:271–8.

    CAS  Google Scholar 

  132. Jalalvand AR, Gholivand MB, Goicoechea HC, Rinnan Å, Skov T. Advanced and tailored applications of an efficient electrochemical approach assisted by AsLSSR-COW-rPLS and finding ways to cope with challenges arising from the nature of voltammetric data. Chemom Intell Lab Syst. 2015;146:437–46.

    CAS  Google Scholar 

  133. Harrison KR, Ombuki-Berman BM, Engelbrecht AP. A parameter-free particle swarm optimization algorithm using performance classifiers. Inf Sci (Ny). 2019;503:381–400.

    Google Scholar 

  134. Kohler M, Vellasco MMBR, Tanscheit R. PSO+: a new particle swarm optimization algorithm for constrained problems. Appl Soft Comput J. 2019;85:105865.

    Google Scholar 

  135. Chaibun T, La-Ovorakiat C, O’Mullane AP, Lertanantawong B, Surareungchai W. Fingerprinting green curry: an electrochemical approach to food quality control. ACS Sensors. 2018;3:1149–55.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The presented review is the result of a concerted effort and fruitful discussions among enthusiastic, young, and (for the occasion) female researchers of the AXES research group, each of them with specific expertise and background, under the guidance of the corresponding author. The authors acknowledge FWO-Flanders, BOF-UA, IOF-UA, FAPESP and EU for funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the material preparation and data collection and analysis. All authors participated in writing and reading and finally approved the final manuscript.

Corresponding author

Correspondence to K. De Wael.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moro, G., Barich, H., Driesen, K. et al. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 412, 5955–5968 (2020). https://doi.org/10.1007/s00216-020-02584-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02584-x

Keywords

Navigation