Skip to main content

Advertisement

Log in

Disruption of Circadian Coordination and Malignant Growth

  • Special Section on Cancer and Rhythm
  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Altered circadian rhythms predicted for poor survival in patients with metastatic colorectal or breast cancer. An increased incidence of cancers has been reported in flying attendants and in women working predominantly at night. To explore the contribution of circadian structure to tumor growth we ablated the 24-h rest-activity cycle and markedly altered the rhythms in body temperature, serum corticosterone and lymphocyte count in mice by complete stereotaxic destruction of the suprachiasmatic nuclei (SCN) or by subjecting the mice to experimental chronic jet-lag. Such disruption of circadian coordination significantly accelerated malignant growth in two transplantable tumor models, Glasgow osteosarcoma and Pancreatic adenocarcinoma. The mRNA expression of clock genes per2 and reverb-α in controls displayed significant circadian rhythms in the liver (Cosinor, p=0.006 and p=0.003, respectively) and in the tumor (p=0.04 and p<0.001, respectively). Both rhythms were suppressed in the liver and in the tumor of jet lagged mice. This functional disturbance of molecular clock resulted in down regulation of p53 and overexpression of c-Myc, two effects which may favor cancer growth. Conclusions:These results indicate that circadian system could play an important role in malignant growth control. This should be taken into consideration in cancer prevention and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526

    CAS  PubMed  Google Scholar 

  2. Klein DC, Moore RY, Reppert SM (eds) (1991) The Suprachiasmatic Nucleus. The Mind’s Clock. Oxford University Press, Oxford, New York

    Google Scholar 

  3. Lévi F, Zidani R, Misset JL (1997) For the international organization for cancer chronotherapy. Randomized multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. Lancet 350:681–686

    PubMed  Google Scholar 

  4. Mormont MC, Lévi F (2003) Cancer chronotherapy: principles, applications and perspectives. Cancer 97:155–169

    Article  CAS  PubMed  Google Scholar 

  5. Mormont MC, Waterhouse J, Bleuzen P, etal. (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045

    CAS  PubMed  Google Scholar 

  6. Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000

    Article  CAS  PubMed  Google Scholar 

  7. Schernhammer ES, Laden F, Speizer FE, etal. (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568

    CAS  PubMed  Google Scholar 

  8. Schernhammer ES, Laden F, Speizer FE, etal. (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828

    PubMed  Google Scholar 

  9. Pukkala E, Aspholm R, Auvinen A, etal. (2002) Incidence of cancer among Nordic airline pilots over five decades: occupational cohort study. BMJ 325:567–571

    Article  PubMed  Google Scholar 

  10. Rafnsson V, Tulinius H, Jonasson JG, Hrafnkelsson J (2001) Risk of breast cancer in female flight attendants: a population-based study (Iceland). Cancer Causes Control 12:95–101

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds P, Cone J, Layefsky M, Goldberg D, Hurley S (2002) Cancer incidence in California flight attendants (United States). Cancer Causes Control 13:317–324

    PubMed  Google Scholar 

  12. Maywood ES, Smith E, Hall SJ, Hastings MH (1997) A thalamic contribution to arousal-induced, non-photic entrainment of the circadian clock of the Syrian hamster. Eur J Neurosci 9:1739–1747

    CAS  PubMed  Google Scholar 

  13. De Prins J, Hequet B (1992) Data processing in chronobiological studies. In: Touitou Y, Haus E (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Berlin, pp 90–113

    Google Scholar 

  14. Mikkelsen JD, Larsen PJ, Sorensen GG, etal. (1994) A dual-immuncytochemical method to localize c-fos protein in specific neurons based on their content of neuropeptides and connectivity Histochemistry 101:245–251

    Article  CAS  PubMed  Google Scholar 

  15. Hastings MH, Best JD, Ebling FJP, etal. (1996) Entraiment of the circadian clock. Brain research III Hypothalamic integration of circadian rhythms. In: Buijs RM, Kalsbeek A, Romijn HJ, Pennartz CMA, Mirmiran M (eds) Progress in Brain Research. 111, Elsevier Science BV, Amsterdam, pp 147–174

    Google Scholar 

  16. Li XM, Liu XH, Filipski E, etal. (2000) Relationship of atypical melatonin rhythm with two circadian clock outputs in B6D2F1 mice. Am J Physiol 278:R924–R930

    CAS  Google Scholar 

  17. Halberg F, Albrecht PG, Bittner JJ (1959) Corticosterone rhythm of mouse adrenal in relation to serum corticosterone and sampling. Am J Physiol 197:1083–1087

    CAS  PubMed  Google Scholar 

  18. Haus E (1992) In: Touitou Y, Haus E (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Berlin, pp 504–526

  19. Filipski E, King VM, Li XM, etal. (2002) Host circadian clock as a control point in tumor progression. J Nat Cancer Inst 94:690–697

    PubMed  Google Scholar 

  20. Glasgow LA, Crane JL, Kern ER (1978) Antitumor activity of interferon against murine osteogenic sarcoma cells. J Natl Cancer Inst 60:659–663

    CAS  PubMed  Google Scholar 

  21. Corbett TH, Roberts BJ, Leopold WR, etal. (1984) Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL6 mice. Cancer Res 44:717–726

    CAS  PubMed  Google Scholar 

  22. Reddy AB, Field MD, Maywood ES, Hastings MH (2002) Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci 22:7326–7330

    CAS  PubMed  Google Scholar 

  23. Filipski E, Delaunay F, King VM, etal. (2004) Effects of chronic jet lag on malignant growth in mice. Cancer Res 64:7879–7885

    Article  CAS  PubMed  Google Scholar 

  24. Hastings MH, Field MD, Maywood ES, Weaver DR, Reppert SM (1999) Differential regulation of mPER1 and TIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock. J Neurosci 19:RC11

    CAS  PubMed  Google Scholar 

  25. Yamazaki S, Numano R, Michikazu A, etal. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  CAS  PubMed  Google Scholar 

  26. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  27. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Development 14:2950–2961

    CAS  PubMed  Google Scholar 

  28. Hara R, Wan K, Wakamatsu H, etal. (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278

    CAS  PubMed  Google Scholar 

  29. Wu MW, Li XM, Xian LJ, Lévi F (2004) Effects of meal timing on tumor progression in mice. Life Sciences 75:1181–1193

    CAS  PubMed  Google Scholar 

  30. Scheving LE, Burns ER, Pauly JE, Tsai TH (1978) Circadian variation in cell division of the mouse alimentary tract, bone marrow and corneal epithelium. Anat Rec 191:479–486

    Article  CAS  PubMed  Google Scholar 

  31. Bjarnason GA, Jordan R (1999) Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am J Pathol 154:613–622

    CAS  PubMed  Google Scholar 

  32. Smaaland R, Laerum OD, Lote K, Sletvold O, Sothern RB, Bjerknes R (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77:2603–2611

    CAS  PubMed  Google Scholar 

  33. Granda TG, Lévi F (2002) Tumor-based rhythms of anticancer efficacy in experimental models. Chronobiol Int 19:21–41

    Article  CAS  PubMed  Google Scholar 

  34. Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    CAS  PubMed  Google Scholar 

  35. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259

    Article  CAS  PubMed  Google Scholar 

  36. Fu L, Lee CC (2003) The circadian clock: pacemaker and tumor suppressor. Nature Rev Cancer 3:350–361

    Article  CAS  Google Scholar 

  37. Granda TG, Liu XH, Cermakian N., et al. (2004) Circadian regulation of cell cycle and apoptosis proteins in mouse bone marrow and tumour. FASEB, published on line, Nov 15

  38. Hofsethh LJ, Hussain SP, Harris CC (2004) P53/25 years after its discovery. Trends Pharmacol Sci 25:177–181

    Google Scholar 

  39. Pasquale Innominato, Elisabeth Filipski, Xiao Mei Li, Francis Lévi. Effects of experimental chronic jet-lag on clock and cell cycle gene expression. Proc. 9th Meeting Soc. Res. Biol. Rhythms, June 24–26, 2004, Whistler, BC, Canada

  40. Petit LM, Jerry DJ, Bittman EL, Harrington ME. (2004) Effects of circadian rhythm disruption on radiation-induced apoptosis. Proc. 9th Meeting Soc. Res. Biol. Rhythms, June 24–26, Whistler, BC, Canada, Abstract 154

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Filipski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipski, E., Li, X.M. & Lévi, F. Disruption of Circadian Coordination and Malignant Growth. Cancer Causes Control 17, 509–514 (2006). https://doi.org/10.1007/s10552-005-9007-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-005-9007-4

Keywords

Navigation