Skip to main content

Advertisement

Log in

Reducing light pollution improves connectivity for bats in urban landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Light pollution can alter animal movements and landscape connectivity. This is particularly true in urban landscapes where a need to incorporate conservation issues in urban planning is urgent.

Objectives

We investigated how potential light-reduction scenarios at conurbation scale change landscape connectivity for bats.

Methods

Through random stratified sampling and species distribution modelling, we assessed the relative importance of light pollution on bat presence probability and activity. We recorded bats during one entire night on each 305 sampling points in 2015. In 2016, we surveyed 94 supplementary points to evaluate models performance. We used our spatial predictions to characterize landscape resistance to bat movements. Then we applied a least-cost modelling approach to identify nocturnal corridors and estimated the impact of five light-reduction scenarios on landscape connectivity for two light non-tolerant bat species.

Results

We found that light pollution detected from satellite images was a good predictor of bat presence and activity up to 700 m radius. Our results exhibited contrasting responses to average radiance: M. daubentonii responded negatively, P. nathusii had a positive response for low values then a negative response after a threshold radiance value of 20 W.m−2.sr−1 and E. serotinus responded positively. Five and four light-reduction scenarios significantly improved landscape connectivity for M. daubentonii and P. nathusii respectively.

Conclusions

Light-reduction measures should be included in urban planning to provide sustainable conditions for bats in cities. We advocate for the use of our methodological approach to further studies to find the best trade-off between conservation needs and social acceptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19:716–723

    Article  Google Scholar 

  • Akasaka T, Nakano D, Nakamura F (2009) Influence of prey variables, food supply, and river restoration on the foraging activity of Daubenton’s bat (Myotis daubentonii) in the Shibetsu River, a large lowland river in Japan. Biol Conserv 142:1302–1310.

    Article  Google Scholar 

  • Arthur L, Lemaire M (2009) Les chauves-souris de France. Belgique, Luxemb Suisse

    Google Scholar 

  • Azam C, Kerbiriou C, Vernet A, Julien JF, Bas Y, Plichard L, Maratrat J, Le Viol I (2015) Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Glob Chang Biol 21:4333–4341

    Article  PubMed  Google Scholar 

  • Azam C, Le Viol I, Julien JF, Bas Y, Kerbiriou C (2016) Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program. Landscape Ecol 53:1694–1703

    Google Scholar 

  • Barataud M, Tupinier Y, Limpens H, Cockle-Betian A (2015) Acoustic ecology of European bats: species identification, study of their habitats and foraging behaviour. 352

  • Bas Y, Escallon A, Ferre M, Haquart A, Rufray V, Disca T, Julien JF (2013) Automatic echolocation call identification in Europe vs. the Neotropics: more species does not mean more difficult. XVI Int Bat Res Conf San Jose, Costa Rica

  • Baugh K, Hsu FC, Elvidge C, Zhizhin M (2013) Nighttime lights compositing using the VIIRS day-night band: preliminary results. Proc Asia-Pacific Adv Netw 35:70–86

    Article  Google Scholar 

  • Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851.

    Article  PubMed  Google Scholar 

  • Boughey KL, Lake IR, Haysom KA, Dolman PM (2011) Improving the biodiversity benefits of hedgerows: how physical characteristics and the proximity of foraging habitat affect the use of linear features by bats. Biol Conserv 144:1790–1798.

    Article  Google Scholar 

  • Brad H. McRae and D. M. Kavanagh. (2011) Linkage Mapper Connectivity Analysis Software. 1–22. https://doi.org/10.1002/ejoc.201200111

  • Burt J (2006) Syrinx, Version 2.6h. University of Washington, Seattle, USA

  • Coleman JL, Barclay RMR (2012) Urbanization and the abundance and diversity of Prairie bats. Urban Ecosyst 15:87–102.

    Article  Google Scholar 

  • Connell JH (2013) Diversity in Tropical Rain Forests and Coral Reefs. Science 199:1302–1310

    Article  Google Scholar 

  • Dietz M, Encarnação JA, Kalko EKV (2006) Small scale distribution patterns of female and male Daubenton’ s bats (Myotis daubentonii) Small scale distribution patterns of female and male Daubenton’ s bats (Myotis daubentonii). Acta Chiropterologica 8:403–415.

    Article  Google Scholar 

  • Dietz C, von Helversen O, Nill D (2009) L’encyclopédie des chauves-souris d’Europe et d’Afrique du Nord: biologie, caractéristiques, protection. Delachaux et Niestlé

  • Dutilleul S (2009) Plan Régional de Restauration des Chiroptères du Nord-Pas-de-Calais: Période 2009-2013. Coord Mammal du Nord la Fr 95

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend AP, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Sobero´n J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29:129–151

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697.

    Article  Google Scholar 

  • Erickson JL, West SD (2002) The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterologica 4:17–24.

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280.

    Article  Google Scholar 

  • FitzGibbon S, Putland D, Goldizen A (2007) The importance of functional connectivity in the conservation of a ground-dwelling mammal in an urban Australian landscape. Landscape Ecol 22:1513–1525.

    Article  Google Scholar 

  • Fonderflick J, Azam C, Brochier C, Cosson E, Quékenborn D (2015) Testing the relevance of using spatial modeling to predict foraging habitat suitability around bat maternity: a case study in Mediterranean landscape. Biol Conserv 192:120–129

    Article  Google Scholar 

  • Frey-Ehrenbold A, Bontadina F, Arlettaz R, Obrist MK (2013) Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. J Appl Ecol 50:252–261.

    Article  Google Scholar 

  • Gaisler J, Zukal J, Rehak Z, Homolka M (1998) Habitat preference and fight activity of bats in a city. J Zool 244:439–445

    Article  Google Scholar 

  • Gaston KJ, Duffy, JP, Gaston S, Bennie J, Davies TW (2014) Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176:917–931

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaston KJ, Visser ME, Hölker F (2015) The biological impacts of artificial light at night: the research challenge. Philos Trans R Soc Lond B 370:20140133.

    Article  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009.

    Article  Google Scholar 

  • Hale JD, Fairbrass AJ, Matthews TJ, Sadler JP (2012) Habitat composition and connectivity predicts bat presence and activity at foraging sites in a large uk conurbation. PLoS ONE 7:e33300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale JD, Fairbrass AJ, Matthews TJ, Davies G, Sadler JP (2015) The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob Chang Biol 21:2467–2478

    Article  PubMed  PubMed Central  Google Scholar 

  • Haquart A (2013) Référentiel d’activité des chiroptères—Eléments pour l’interprétation des dénombrements de chiroptères avec les méthodes acoustiques en zone méditerranéenne française. Biotope, Ec Prat des Hautes Etudes, p 99

    Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models, volume 43 of Monographs on Statistics and Applied Probability. CRC Press, Boca Raton

    Google Scholar 

  • Hölker F, Wolter C, Perkin EK, Tockner K (2010) Light pollution as a biodiversity threat. Trends Ecol Evol 25:681–682.

    Article  PubMed  Google Scholar 

  • Ives AR, Klopper ED (1997) Spatial variation in abundance created by stochastic temporal variation. Ecology 78:1907–1913.

    Article  Google Scholar 

  • Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881.

    Article  PubMed  Google Scholar 

  • Krüger F, Clare EL, Symondson WO, Keišs O, Pētersons G (2014) Diet of the insectivorous bat Pipistrellus nathusii during autumn migration and summer residence. Mol Ecol 23:3672–3683

    Article  PubMed  Google Scholar 

  • Kuijper DP, Schut J, van Dullemen D, Toorman H, Goossens N, Ouwehand J, Limpens HJGA (2008) Experimental evidence of light disturbance along the commuting routes of pond bats (Myotis dasycneme). Lutra 51:37–49

    Google Scholar 

  • Kyba CCM, Kuester T, Sánchez de Miguel A, Baugh K, Jechow A, Hölker F, Bennie J, Elvidge CD, Gaston KJ, Guanter L (2017) Artificially lit surface of Earth at night increasing in radiance and extent. Sci Adv 3:e1701528

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacoeuilhe A, Machon N, Le Bocq A, Kerbiriou C (2014) The influence of low intensities of light pollution on bat communities in a semi-natural context. Plos ONE 9:103042.

    Article  CAS  Google Scholar 

  • LaPoint S, Balkenhol N, Hale J, Sadler J, Ree R (2015) Ecological connectivity research in urban areas. Funct Ecol 29:868–878

    Article  Google Scholar 

  • LaRue MA, Nielsen CK (2008) Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol Modell 212:372–381.

    Article  Google Scholar 

  • Luck GW, Smallbone L, Threlfall C, Law B (2013) Patterns in bat functional guilds across multiple urban centres in south-eastern Australia. Landscape Ecol 28:455–469.

    Article  Google Scholar 

  • Mathews F, Roche N, Aughney T, Jones N, Day J, Baker J, Langton S (2015) Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland. Philos Trans R Soc B 370:20140124–20140124

    Article  Google Scholar 

  • McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecol 23:1143–1155.

    Article  Google Scholar 

  • Mickleburgh SP, Hutson AM, Racey PA (2002) A review of the global conservation status of bats Major threats. Oryx 36:18–34.

    Article  Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landscape Ecol 31:1177–1194

    Article  Google Scholar 

  • Miller BW (2001) A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropterol 3:93–105

    Google Scholar 

  • Roever CL, Van Aarde RJ, Leggett K (2012) Functional responses in the habitat selection of a generalist mega-herbivore, the African savannah elephant. Ecography (Cop) 35:972–982

    Article  Google Scholar 

  • Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: a review. Mamm Biol 80:205–212.

    Article  Google Scholar 

  • Rydell J (1991) Seasonal use of illuminated areas by foraging northern bats Eptesicus nilssoni. Holarct Ecol 14:203–207

    Google Scholar 

  • Stevenson-Holt CD, Watts K, Bellamy CC, Nevin OT, Ramsey AD (2014) Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel: A comparison of approaches using expert-opinion and habitat suitability modelling. PLoS ONE 9:e112119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone EL, Harris S, Jones G (2015) Impacts of artificial lighting on bats: a review of challenges and solutions. Mamm Biol 80:213–219.

    Article  Google Scholar 

  • Stone EL, Jones G, Harris S (2009) Street lighting disturbs commuting bats. Curr Biol 19:1123–1127.

    Article  CAS  PubMed  Google Scholar 

  • Stone EL, Jones G, Harris S (2012) Conserving energy at a cost to biodiversity? Impacts of LED lighting on bats. Glob Chang Biol 18:2458–2465.

    Article  Google Scholar 

  • Straka TM, Lentini PE, Lumsden LF, Wintle BA, van der Ree R (2016) Urban bat communities are affected by wetland size, quality, and pollution levels. Ecol Evol 6:4761–4774

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. Conserv Biol Ser 14:29

    Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19.

    Article  Google Scholar 

  • Tsao JY, Saunders HD, Creighton JR, Coltrin ME, Simmons JA (2010) Solid-state lighting: an energy-economics perspective. J Phys D Appl Phys 43:354001

    Article  CAS  Google Scholar 

  • Urban D, Keitt T (2010) Landscape connectivity: a Graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Watts K, Eycott AE, Handley P, Ray D, Humphrey JW, Quine CP (2010) Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landscape Ecol 25:1305–1318

    Article  Google Scholar 

  • Weller TJ, Castle KT, Liechti F, Hein CD, Schirmacher MR, Cryan PM (2016) First direct evidence of long-distance seasonal movements and hibernation in a migratory bat. Sci Rep 6:34585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797.

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) In Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W (eds) Mixed effects models and extensions in ecology with R. Springer, New York

Download references

Acknowledgements

We thank Yohan Tison from “La Ville de Lille”, Sophie Wrobel and Claire Poitout from “Espaces Naturels Lille Métropole”, Matthieu Lageard from « Biotope » , Jean-François Julien and Alexandre Haquart for their field assistance, equipment lending and with acoustic identification. The project “TRAME NOIRE” was funded by the “conseil regional Nord-Pas-de-Calais” and by “Fondation pour la recherche sur la biodiversité”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Laforge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laforge, A., Pauwels, J., Faure, B. et al. Reducing light pollution improves connectivity for bats in urban landscapes. Landscape Ecol 34, 793–809 (2019). https://doi.org/10.1007/s10980-019-00803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00803-0

Keywords

Navigation