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Abstract. Hurricanes, as one of the most devastating natural disasters, have posed great threats to people in coastal areas. A 10 

better understanding of spatiotemporal dynamics of human settlement in hurricane-prone areas is demanded for sustainable 

development. This study uses the DMSP/OLS nighttime light (NTL) data sets from 1992 to 2013 to examine human settlement 

development in areas with different levels of hurricane proneness. The DMSP/OLS NTL data from six satellites were 

intercalibrated and desaturated with AVHRR and MODIS optical imagery to derive the vegetation-adjusted NTL urban index 

(VANUI), a popular index that quantifies human settlement intensity. The derived VANUI time series was examined with the 15 

Mann-Kendall test and Theil-Sen test to identify significant spatiotemporal trends. To link the VANUI product to hurricane 

impacts, four hurricane-prone zones were extracted to represent different levels of hurricane proneness. Aside from geographic 

division, a wind-speed weighted track density function was developed and applied to historical North Atlantic Basin (NAB)-

origin storm tracks to better categorize the four levels of hurricane proneness. Spatiotemporal patterns of human settlement in 

the four zones were finally analyzed. The results clearly exhibit a north-south and inland-coastal discrepancy of human 20 

settlement dynamics. This study also reveals that both the zonal extent and zonal increase rate of human settlement positively 

correlate with hurricane proneness levels. The intensified human settlement in high hurricane-exposure zones deserves further 

attention for coastal resilience. 
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1 Introduction 

Hurricane, a specific type of tropical cyclone with maximal wind speed of 74 miles per hours or higher, is one of the most 

devastating natural disasters in the world and is recurring more frequently than ever in coastal areas (Vecchi and Knutson, 

2018). Tropical cyclones threating the Conterminous United States (CONUS) are mostly originated from North Atlantic Basin 

(NAB) that includes the North Atlantic Ocean, Caribbean Sea and Gulf of Mexico, and Eastern Pacific Basin (EPB) that covers 5 

Northeastern Pacific (east of 140oW and north of the equator) (Goldenberg, 2001). Historically, more NAB-origin hurricanes 

have landed on the U.S territories, dramatically affecting people living in Gulf coasts and Atlantic coasts. While the EPB-

origin storms occasionally visited the southwestern CONUS, by the time they landed they usually degraded to tropical cyclones 

due to the long travel distance and cold water in coastal California (Chenoweth and Landsea, 2004).  

Atlantic hurricane season runs from June 1st to November 30th, during which the NAB exhibits significantly intensified 10 

tropical cyclone activity and gives rise to many devastating hurricanes landing the coasts. In 2016, Hurricane Mathew, a 

Category 5 hurricane, claimed a total of 34 direct deaths in U.S. In 2017, Hurricane Harvey in the Gulf coast and Hurricane 

Irma in the Atlantic coast caused 125 billion and 50 billion dollars of damage respectively, ranking the second and fifth costliest 

hurricanes in the U.S (“Costliest U.S. tropical cyclones tables updated”, 2018). In 2018, the third year in a consecutive series 

(2016-2018) of above-average damaging Atlantic hurricanes, there were 15 named tropical storms, eight of which became 15 

hurricanes that included two major hurricanes. Hurricane Florence for example, as a major hurricane in 2018, has caused 

severe economic damage to North Carolina ($22 billions), South Carolina ($5.5 billions) and Virginia ($1 billion) (Krupa, 

2018). The widespread storm surge and extensive floods from extreme rainfall largely crippled public infrastructures and 

impacted all segments of society. Noticeable increase in the number of NAB-origin hurricanes since late 1980s has been 

observed (Vecchi and Knutson, 2018). Even though it is partly due to improved monitoring (Villarini et al., 2011), the increased 20 

intensity and duration of these disasters have posed great threats to people residing in the U.S. Atlantic and Gulf Coasts 

(Landsea et al., 2010). 

Despite these threats, the U.S. southeastern region has experienced significant population growth in recent decades. 25 

Population in Florida, North Carolina and South Carolina, for instance, has increased by 61.2%, 43.6% and 54.3% respectively 

since 1990 (U.S Census Bureau, 2018). The densely populated coastal areas are receiving higher threats than ever (Crosset, 

2005). In these hurricane-prone areas, better understanding of the temporal and spatial dynamics of human settlement is needed 

for advanced damage assessment and sustainable urban planning. 

Satellite-based observations have been widely applied in investigating urban dynamics as remote sensing provides spatially 30 

explicit information of urbanization process. Extensive application has been made utilizing multispectral sensors that record 

the reflectance of ground features to categorize different land covers, thus allowing the delineation of urban extent (Xu, 2008; 

Zha, 2003). This type of remotely sensed imagery, however, relies on the reflective characteristics of all land objects on ground, 

thus lacking the perspective on human activities. In comparison, Satellite-derived nighttime light (NTL) data provides a unique 

and direct observation of human settlement via night lights. Natural land covers are distinctively dark in NTL imagery. 35 
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Nighttime remote sensing has been increasingly used for analyzing socioeconomic dynamics and urbanization process at 

national and regional levels (Elvidge et al., 1997; Ghosh et al., 2010), thanks to their light-only sensitivity, large spatial 

coverage (Imhoff et al., 1997), easiness to acquire (Lu et al., 2008) and consistency over a long term (Elvidge et al., 1999).  

Among all the satellite-derived NTL products, the NTL data obtained by Operational Linescan System (OLS) via the U.S. 

Air Force Defense Meteorological Satellite Program (DMSP), hereafter referred as DMSP/OLS NTL, is the most commonly 5 

used due to its long-time span (more details in next section). Extensive attempts have been made to harvest the NTL 

observations from DMSP/OLS in applications including urban expansion and decay (Lu et al., 2018), settlement dynamics 

(Elvidge et al., 1999; Yu et al., 2014), socioeconomic development (Doll et al., 2000) and energy consumption (Chand et al., 

2009). Recent studies enhanced the NTL products by fusing DMSP/OLS NTL data with natural land cover characteristics such 

as the Normalized Difference Vegetation Index (NDVI) to reduce the light saturation problem. This fusion greatly increased 10 

the DMSP/OLS NTL potential in discriminating the human settlement structures (Lin et al., 2014; Liu, et al., 2015). The 

improved DMSP/OLS NTL products provide a valuable resource for monitoring large-coverage and long-term urbanization 

dynamics. 

The goal of this paper is to illustrate the use of DMSP/OLS NTL data in 1992-2013 to monitor urbanization process and 

hurricane impacts on the U.S. Atlantic and Gulf coasts. Hurricane-prone areas were first derived by calculating the track 15 

density from historical storm tracks in the NAB. An intercalibrated DMSP/OLS NTL time series were built in a yearly interval. 

Assisted with the NDVI data, the Vegetation Adjusted NTL Urban Index (VANUI) was fused to characterize human settlement 

intensities in the study area. After that, a trend analysis was conducted to identify areas with significant increase of human 

settlement intensity in different zones, in which the potential hurricane impacts were statistically evaluated. The spatiotemporal 

changes of human settlement in hurricane-prone zones provide valuable information to analyze damage and disaster migration 20 

and to support decision making of urban development. 

2 DMSP/OLS NTL and human settlement indices  

The DMSP/OLS satellites are operated by U.S Air Force (USAF) and are composed of six satellites (F10, F12, F14, F15, F16 

and F18) in the period of 1992-2013. With a 3,000 km orbit swath, they acquired the OLS imagery from −65° to 65° in latitude 

at a nominal resolution of 30 arc second (around 1 km at the Equator) (NOAA Earth Observation Group, 2018). The temporal 25 

coverages of the six satellites are summarized in Table 1. 

Table 1. 

DMSP/OLS Satellites and overlays in corresponding years. 

 Satellites 

Year F10 F12 F14 F15 F16 F18 

1992 F101992      

1993 F101993      

1994 F101994 F121994     

1995  F121995     
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1996  F121996     

1997  F121997 F141997    

1998  F121998 F141998    

1999  F121999 F141999    

2000   F142000 F152000   

2001   F142001 F152001   

2002   F142002 F152002   

2003   F142003 F152003   

2004    F152004 F162004  

2005    F152005 F162005  

2006    F152006 F162006  

2007    F152007 F162007  

2008     F162008  

2009     F162009  

2010      F182010 

2011      F182011 

2012      F182012 

2013      F182013 

Note. Bold terms indicate the years with two satellites available in a given year. 

 

Due to the absence of on-board calibration and intercalibration, the annual DMSP/OLS NTL composites derived from 

multiple satellites in a span of 22 years were not comparable directly, which posed great challenges in DMSP/OLS NTL based 

trend analysis (Tan, 2016). Elvidge et al. (2009) designed a three-step framework to intercalibrate the DMSP/OLS NTL 

composites from different satellites by performing a 2nd-order polynomial regression against the NTL reference data. This 5 

simple framework has been proven efficient in reducing discrepancies in digital number (DN) values of the DMSP/OLS NTL 

time series (Pandey et al., 2013) and has been adopted in many studies (Liu and Leung, 2015; Huang et al., 2016). In this 

study, we intercalibrate the DMSP/OLS NTL data using the same method. 

Another notable limitation of DMSP/OLS NTL is the saturation of luminosity in the 6-bit (DN in a range of 0-63) imagery 

(Letu et al., 2010). Among the numerous attempts to mitigate its saturation effect, a commonly used vegetation index, NDVI, 10 

has been proven promising (Zhou et al., 2014). Lu et al. (2008) proposed a human settlement index (HSI) by fusing the 

DMSP/OLS NTL data with the maximal NDVI in growing season. Zhang et al. (2013) developed a vegetation-adjusted NTL 

urban index (VANUI) to capture the inverse correlation between vegetation and light luminosity. This simple index improves 

the HSI and efficiently reveals the heterogeneity in areas with saturated DN values (Ma et al. 2014). In this study, we adopt 

the VANUI index to desaturate the DMSP/OLS NTL data.  15 

3 Datasets 

3.1 Historical storm tracks 

The historical storm tracks were retrieved from International Best Track Archive for Climate Stewardship (IBTrACS), hosted 

by NOAA (https://www.ncdc.noaa.gov/ibtracs/). The IBTrACS provides a globally best track dataset by merging storm 
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information from multiple centers into one product. As majority of the storms around on the CONUS are formed in the NAB 

(Fig. 1), we only examined the NAB-origin storms along the U.S. Atlantic and Gulf Coasts. A total of 655 storm tracks 

containing 18,929 line segments (with an attribute of wind speed) were downloaded in this study.  

 

Figure 1: Historical storm tracks with NAB-origin (in red) and EPB-origin (in green). 5 

3.2 DMSP/OLS NTL series and NDVI series 

The DMSP/OLS NTL products used in this study are the version 4 Stable Lights series in a 22-year span (1992-2013). The 

DMSP/OLS NTL data were obtained from National Centers for Environmental Information website 

(https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). The version 4 DMSP/OLS Stable Lights product has already 

excluded sunlit, glare, moonlit, cloud coverage and lighting. Ephemeral events such as wildfires also has been discarded. In 10 

this study, one composite each year in the CONUS was produced from each satellite. When two satellites were available in 

certain years, a combined composite in this year was derived using the method described in Section 4.2. All DMSP/OLS NTL 

images were resampled to the 1 km pixel size.  

In the same period of 1992-2013, the NDVI products in the CONUS from two satellite sensors were used in this study: 

Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). 15 

NDVI series from AVHRR and MODIS span from 1992-2005 and 2003-2013, respectively. These two products were further 

calibrated in three overlaying years: 2003, 2004 and 2005 (described in Section 5.1) to increase data comparability. AVHRR 

NDVI series is the annual maximum value composite (MVC) with 1 km pixel size, provided by USGS Earth Resources 
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Observation and Science (USGS/EROS) (https://phenology.cr.usgs.gov/get_data_1km.php). A number of preprocessing steps 

have been performed in this product to remove noises, which includes removal of spurious spikes, temporal smoothing and 

interpolation. MODIS NDVI series was derived from Oak Ridge National Laboratory Distributed Active Archive Center 

(ORNL DAAC) (https://daac.ornl.gov/). The data were generated from Terra MOD13Q1 and Aqua MYD13Q1 products and 

have been smoothed and gap-filled with 250 m spatial resolution (Spruce et al., 2016). To be comparable with AVHRR NDVI, 5 

the annual MVC product was derived from the MODIS NDVI series by selecting the maximum NDVI value in each year. It 

was also resampled to 1 km pixel size. Water bodies contained in both datasets were masked out using MODIS MOD44W 

product. 

4 Methods 

4.1 Delineation of hurricane-prone zones 10 

The delineation of hurricane-prone zones is based on the retrieved 655 NAB-origin storms landed on the CONUS. An area 

with higher hits of historical storms is expected to be more hurricane prone. We also assume a generally positive relationship 

between wind intensity of a storm and its impact. At a given location (i,j), a circular neighborhood (R) centered at this location 

was assigned. For all line segments of storm tracks falling in this neighborhood, the storm track density was calculated as a 

line density of all segments weighted by their wind speeds: 15 

𝜌𝑖,𝑗 = ∑𝐿𝑖,𝑗
𝑟 ×𝑊𝑖,𝑗

𝑟

𝑟∈𝑅

,                                                                                                                                                                                     (1) 

where 𝜌𝑖,𝑗  denotes the weighted line density at location (𝑖, 𝑗).  𝐿𝑖,𝑗
𝑟  and 𝑊𝑖,𝑗

𝑟  denote the length of a line segment r and 

corresponding wind speed, respectively.  

    The storm track density was then normalized to a range of [0,1], with a higher value indicating higher hurricane proneness.  

To simplify the process for zonal analysis, we objectively categorized the normalized storm track density into four zones from 20 

low to high hurricane proneness: Zone 4 (0-0.2), Zone 3 (0.2-0.5), Zone 2 (0.5-0.7) and Zone 1 (0.7-1.0).  

4.2 Intercalibration (DMSP/OLS NTL series; NDVI series) and VANUI calculation 

We adopted the Elvidge et al. (2009) procedure to intercalibrate the DMSP/OLS NTL time series. Serving as the reference site 

in that study, the geographic area of metropolitan Los Angeles and City of San Diego, CA maintains high conformity of NTL 

values throughout the 22-year period (Kyba et al., 2017), which satisfies the “pseudo invariant” rule for calibration site 25 

selection (Elvidge et al., 2009). The year 2007 (satellite F16) has been commonly selected as the reference year in many studies 

(Yi et al., 2014; Ma et al., 2014). Therefore, we extracted the DMSP/OLS NTL data in this year in the same site as our 

reference. With all lit pixels (DN >0) in the reference site, a second-order regression model was performed to calibrate the 

NTL data in each year: 

𝐷𝑁𝑛,𝑐𝑎𝑙 = 𝑐 + 𝑏 × 𝐷𝑁𝑛 + 𝑎 × 𝐷𝑁𝑛
2,                                                                                                                                                          (2) 30 
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where 𝐷𝑁𝑛,𝑐𝑎𝑙 is the calibrated DN value in year 𝑛, 𝐷𝑁𝑛 is the original DN value in year 𝑛 and 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are the coefficients. 

The non-lit pixels (DN=0) are not calibrated.  

    As shown in Table1, two DMSP/OLS NTL data layers are available in overlapping years. For lit pixels (DN>0 in both 

years), the calibrated DN values in this year are calculated as the average of two calibrated data sets. The value of a pixel 

remains 0 if its original DN value in any year is 0. Finally, the calibrated DMSP/OLS NTL images were normalized (𝐷𝑁𝑛𝑜𝑟) 5 

to [0,1]. 

Similarly, the annual maximal NDVI (𝑁𝐷𝑉𝐼𝑀𝑉𝐶) products from AVHRR (𝑁𝐷𝑉𝐼𝐴𝑉𝐻𝑅𝑅
𝑀𝑉𝐶  from 1992 to 2005) and MODIS 

(𝑁𝐷𝑉𝐼𝑀𝑂𝐷𝐼𝑆
𝑀𝑉𝐶  from 2003 to 2013) were intercalibrated to maintain the continuity and comparability in 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 annual series. 

A stratified sampling was applied to pixels with NDVI value above 0.1 to ensure that land covers in different NDVI ranges 

were equally sampled. A total of 30,000 samples were collected within four hurricane-prone zones in year 2003, 2004 and 10 

2005. It has been reported that MODIS maintains higher spectral sensitivity than AVHRR (Tucker et al., 2005). Here, a linear 

regression was applied to correct AVHRR 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 to MODIS 𝑁𝐷𝑉𝐼𝑀𝑉𝐶: 

𝑁𝐷𝑉𝐼𝑀𝑂𝐷𝐼𝑆
𝑀𝑉𝐶 = 𝛼 ×𝑁𝐷𝑉𝐼𝐴𝑉𝐻𝑅𝑅

𝑀𝑉𝐶 + 𝛽,                                                                                                                                                           (3) 

where 𝛼 and 𝛽 are regression coefficients.   

The calibrated 𝑁𝐷𝑉𝐼𝐴𝑉𝐻𝑅𝑅
𝑀𝑉𝐶  series from 1992-2002 were merged with 𝑁𝐷𝑉𝐼𝑀𝑂𝐷𝐼𝑆

𝑀𝑉𝐶  from 2003-2013 to form a 22-year NDVI 15 

MVC series (𝑁𝐷𝑉𝐼𝑐𝑎𝑙
𝑀𝑉𝐶). Negative NDVI values are usually associated with non-living environments such as water bodies and 

NDVI values above 1 are not meaningful. Therefore, we limited all NDVI values in the 𝑁𝐷𝑉𝐼𝑐𝑎𝑙
𝑀𝑉𝐶 series to a range of 0 to 1.  

Finally, with the normalized DMSP/OLS NTL and the calibrated NDVI data series, the VANUI series was extracted (Zhang 

et al. 2013): 

VANUI = (1 − 𝑁𝐷𝑉𝐼𝑐𝑎𝑙
𝑀𝑉𝐶) × 𝐷𝑁𝑛𝑜𝑟,                                                                                                                                                          (4) 20 

where 𝐷𝑁𝑛𝑜𝑟  denotes the normalized DMSP/OLS NTL value and 𝑁𝐷𝑉𝐼𝑐𝑎𝑙
𝑀𝑉𝐶  denotes the calibrated 𝑁𝐷𝑉𝐼𝑀𝑉𝐶  value. The 

VANUI has a range of [0,1]. In general, higher proportion of human settlements in a pixel leads to higher NTL and lower 

NDVI, both contributing to a higher VANUI. Therefore, the VANUI serves as a proxy of intensity of human settlement.  

4.3 Trend analysis of human settlement 

The VANUI series in a 22-year span shed lights on spatiotemporal development of human settlement. We performed the trend 25 

analysis by applying Mann-Kendall test (Mann, 1945) coupled with Theil-Sen slope estimator (Sen, 1968). The Mann-Kendall 

test statistically assesses if there is a significant monotonic upwards or downwards in the time series. Given the 22-year VANUI 

series, the Mann-Kendall test first computes 𝑆 statistics (Mann, 1945): 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘),

𝑛

𝑗−𝑘+1

𝑛−1

𝑘−1

                                                                                                                                                                        (5) 
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where 𝑛 denotes the total number of observations (22 in this study) in a series, 𝑥𝑗 and 𝑥𝑘 are the data values at different points, 

i.e. the VANUI in different years in this study. 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘) denotes an indicator that takes on the values 1, 0, or -1 

respectively according to the signs of (𝑥𝑗 − 𝑥𝑘). The variance of 𝑆 (𝑉𝑎𝑟𝑆) is further computed as: 

𝑉𝑎𝑟𝑆 =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −∑𝑡𝑝

𝑔

𝑝−1

(𝑡𝑝 − 1)(2𝑡𝑝 + 5)],                                                                                                             (6) 

where 𝑔 denotes the number of tied groups and 𝑡𝑝 denotes the number of observations in the 𝑝th group. Finally, a 𝑍 value is 5 

calculated as: 

𝑍 =

{
 
 

 
 
𝑆 − 1

√𝑉𝑎𝑟𝑆
,                𝑆 > 0

0,                          𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟𝑆
,               𝑆 < 0

                                                                                                                                                                      (7) 

The 𝑍 value in Eq.7 represents the monotonic tendency of a time series. A positive 𝑍 indicates an increasing trend while a 

negative 𝑍 indicates a decreasing one. The absolute value of 𝑍 indicates the intensity of the trend. The significance of 𝑍 was 

examined through a two-tail test with significance level 𝛼 = 0.05. If a significant trend exists, the Theil-Sen slope estimator 10 

was further applied to estimate its slope. As a non-parametric indicator, it has low sensitiveness to outliers and high robustness 

in short-term series and has been widely applied in remote sensing fields (de Jong et al., 2011; Fernandes and Leblanc, 2005). 

Given a VANUI time series, the slope at any point 𝑖 (𝑄𝑖) can be calculated as: 

𝑄𝑖 =
𝑥𝑗 − 𝑥𝑘
𝑗 − 𝑘

, 𝑖 = 1,2,3,…𝑁, 𝑗 > 𝑘                                                                                                                                                          (8) 

The Theil-Sen slope (𝑄𝑚𝑒𝑑) is the median of all 𝑄𝑖 values in the time series. It indicates the steepness (change rate) of a 15 

certain trend. Therefore, pixels with high 𝑄𝑚𝑒𝑑  values represent rapid increase of human settlement intensity during the 

investigated time period.  

With the 22-year VANUI image series, clusters of geographic areas in the study region with significant increase of human 

settlement were extracted. The summed slope per unit in a cluster represented the rapidness of human settlement growth in the 

22 years. The spatiotemporal patterns of this growth in different hurricane-prone zones were finally analyzed.  20 

 

5 Results and discussion 

5.1 Hurricane-prone zones 

The 655 NAB-origin storms landed on the CONUS (mostly along Atlantic and Gulf coasts) are presented in Fig. 1a. The 

derived wind speed-weighted track density in the study area is presented in Fig. 2b. Based on the density levels, we divided 25 

the track density map into four hurricane-prone zones that represent different levels of hurricane impacts: the highest impacts 
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in Zone 1 and lowest in Zone4. The study area contains all U.S. states covered in the hurricane-prone zones (Fig.2c): Maine, 

Massachusetts, New Jersey, New York, North Carolina, Pennsylvania, Rhode Island, Tennessee, Texas, Maryland, Alabama, 

Arkansas, Connecticut, Delaware, DC, Florida, Georgia, Kentucky, Louisiana, Mississippi, South Carolina, Vermont, Virginia 

and West Virginia. Some of these states such as Florida, Texas and North Carolina are well recognized as fast growing in both 

population and economy in recent years (Milesi et al., 2003; Klotzbach et al., 2018), leading to higher threats and recovery 5 

costs from hurricanes. 

 

Figure 2: (a) Historical NAB-origin storm tracks; (b) Normalized storm track density weighted by wind speed; (c) Hurricane-prone 

zones: Zone 4 (with track density 0 – 0.2), Zone 3 (0.2 – 0.5), Zone 2 (0.5 - 0.7) and Zone 1 (0.7 – 1.0). 

5.2 Intercalibration results of DMSP/OLS NTL series and NDVI series 10 

The reference site for intercalibration is composed of an urban stripe from Los Angeles to San Diego, CA in the southwest end 

of the United States (Fig. 3a). Agreeing with Elvidge et al. (2009), the histograms of all NTL images in this area exhibit a 

sharp, bimodal distribution (urban vs. non-urban) with limited temporal variation. This confirms that it is a valid reference site 

for intercalibration of NTL images. Among the three example scatterplots between the NTL data in three years and the F162007 
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reference, the F162006 data show the highest agreement with the reference as they were acquired by the same satellite (Fig. 

3b1). The F101992 data (Fig. 3b2) exhibit less agreement due to its different satellite origin and a long time interval from 

2007. However, a 𝑅2 of 0.949 still warrants a decent agreement for calibration. Fig. 3b3 demonstrates the necessity of a second-

order regression instead of a linear one. The regression equations and intercalibration coefficients for all years are listed in 

Table 2. 5 

 

Figure 3: (a) DMSP/OLS NTL intercalibration in L.A metropolitan and City of San Diego; (b1) Correlation between F162006 and 

reference year F162007; (b2) Correlation between F101992 and reference year F162007; (b3) Correlation between F152003 and 

reference year F162007. 

Table 2. 

DMSP/OLS NTL intercalibration coefficients 

Satellite Year 𝑐 𝑏 𝑎 𝑅2 

F10 1992 -0.3712 1.0953 -0.0015 0.949 

F10 1993 -1.4938 1.4753 -0.0072 0.955 

F10 1994 -0.9394 1.4923 -0.0077 0.951 

F12 1994 -0.0430 1.2057 -0.0033 0.954 

F12 1995 -0.6145 1.2354 -0.0037 0.955 

F12 1996 -0.3298 1.2840 -0.0045 0.945 

F12 1997 0.0253 1.1669 -0.0029 0.934 

F12 1998 0.2550 1.0688 -0.0013 0.949 

F12 1999 -0.3859 0.9984 -0.0001 0.967 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-64
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 30 April 2019
c© Author(s) 2019. CC BY 4.0 License.



11 

 

F14 1997 0.1852 1.5516 -0.0090 0.936 

F14 1998 -0.1074 1.4379 -0.0071 0.959 

F14 1999 -0.5429 1.4508 -0.0070 0.967 

F14 2000 -0.4461 1.3396 -0.0053 0.969 

F14 2001 -0.2633 1.4454 -0.0071 0.974 

F14 2002 0.3598 1.3926 -0.0065 0.961 

F14 2003 -0.0390 1.3677 -0.0059 0.979 

F15 2000 -1.0303 1.1837 -0.0027 0.967 

F15 2001 -0.8264 1.1821 -0.0027 0.977 

F15 2002 -0.6087 1.1485 -0.0022 0.981 

F15 2003 -1.2553 1.6417 -0.0099 0.978 

F15 2004 -0.6269 1.6067 -0.0095 0.981 

F15 2005 -0.8131 1.5621 -0.0086 0.980 

F15 2006 -0.4824 1.3515 -0.0054 0.989 

F15 2007 -0.4583 1.4299 -0.0066 0.983 

F16 2004 -0.0440 1.3285 -0.0053 0.968 

F16 2005 -1.0392 1.5749 -0.0088 0.986 

F16 2006 -0.6923 1.2201 -0.0033 0.988 

F16 2007 0.0000 1.0000 0.0000 1.000 

F16 2008 -0.0982 0.9931 0.0002 0.989 

F16 2009 -0.1023 1.1478 -0.0024 0.979 

F18 2010 0.1369 0.7924 0.0030 0.972 

F18 2011 0.0081 1.0310 -0.0006 0.980 

F18 2012 0.5943 0.8498 0.0021 0.988 

F18 2013 0.5167 0.8549 0.0021 0.991 

Note. Bold indicates the reference satellite in 2007. 

 

The inter-calibration of 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 in the three overlaying years is shown in Fig. 4a (AVHRR) and Fig. 4b (MODIS). Via 

visual interpretation, overall the MODIS product has higher peak NDVI than AVHHR. The regression shows a linear 

relationship between the two 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 products (𝑅2 = 0.934) with 𝛼 = 1.1835 and 𝛽 = −0.1037 (Fig. 4c). The histograms 

(Fig. 4d) demonstrate that the calibration process has shifted the AVHRR histogram to the right, making it more comparable 5 

with MODIS.  
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Figure 4: (a) 𝑵𝑫𝑽𝑰𝑴𝑽𝑪 series from AVHRR in the overlaying years; (b) 𝑵𝑫𝑽𝑰𝑴𝑽𝑪 series from MODIS in the overlaying years; (c) 

linear regression between AVHRR and MODIS using stratified sampling; (d) comparison of histograms between MODIS and 

AVHRR (before and after calibration). 

5.3 The VANUI time series 5 

An example VANUI map (1992) for the entire the study area is shown in Fig. 5a, in which red color represents high VANUI 

value (high human settlement intensity) while blue color means the opposite. Several subsets of the VANUI maps in year 

1992, 2002 and 2013 are displayed to demonstrate more details in densely populated urban clusters:  Philadelphia (Fig. 5b), 

Charlotte (Fig. 5c), Atlanta (Fig. 5d), Houston (Fig. 5e) and Orlando (Fig. 5f). Interestingly, City of Philadelphia (Fig.5b) 

experienced slightly decreased human settlement intensity, especially in the 1992-2002 period. This observation agrees with 10 

the population dynamics of Philadelphia in past decades: 1990-2000 (-4.3%), 2000-2010 (+0.6%). Similar trends of population 

decrease have been observed in other big northeastern cities such as Pittsburgh, in which its population dramatically decreased 

-9.5% during 1990-2000 and -8.6% during 2000-2010 (U.S Census Bureau, 2018). The population loss is also recorded in a 

large number of small cities in the northeast region including Johnstown and Rochester in NY, Weirton in WV and Harrisburg 

in PA (U.S Census Bureau, 2018). 15 

Oppositely, the southern and southeastern cites have experienced intensified human settlement characterized by expanded 

city perimeters and intensified urban cores. Houston (Fig. 5e), for instance, reveals dramatic increase of human settlement. 

Again, this observation is well supported by the population boost per the census records, with an increasing rate of 19.8% in 
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1990-2000 and 7.5% in 2000-2010. Other cities including Charlotte (Fig. 5c), Atlanta (Fig. 5d) and Orlando (Fig. 5f) also have 

seen significantly intensified human settlement supported by their increasing population records. In general, the opposite trends 

of human settlement between north and south of study area matches well with the “Snow Belt-to-Sun Belt” population shift 

trend in the last decades that has been documented in past studies (Hogan, 1987; Iceland et al., 2013). 

It could be noted that the VANUI maps in 2013 provide much finer details than those in 1992 and 2002. Given the unaltered 5 

spatial resolution of DMSP/OLS sensors, it can be explained by the different resolutions of the raw NDVI products from 

AVHRR (1km) and MODIS (250m). Although images have been resampled to the same pixel size (1km) and carefully 

calibrated in their time series, the intrinsic sensitivity of those two sensors still affect the VANUI outputs. 

 
 10 
Figure 5: The VANUI distribution in the study area in 1992 (a). The subfigures demonstrate the VANUI variations in 1992, 2002 

and 2013 in five selected urban cities: Philadelphia (b), Charlotte (c), Atlanta (d), Houston (e) and Orlando (f). The white clusters 

are water bodies masked out of analysis.  
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5.4 Spatiotemporal patterns of human settlement and hurricane impacts 

In each hurricane-prone zone, the yearly percentage lit pixels (VANUI> 0) sheds light on land development on a yearly 

basis, leading to better understanding of the process of human settlement facing different degrees of hurricane impacts. The 

inter-annual fluctuation of total lit-pixel numbers exists in all zones, presumably due to the uncertainties introduced from the 

calibration of DMSP/OLS NTL series and NDVI series. Bearing these noises, Fig. 6 presents the general trends of lit pixel 5 

percentage in each zone. The lit pixel percentage varies in different zones, revealing a rank of Zone 1 (48.5%) followed by 

Zone 2 (45.4%), Zone 3 (41.6%) and Zone 4 (31.6%). Urban development was favored and prioritized in coastal regions, 

which were also the zones facing higher hurricane impacts.  

As Fig. 6a (Zone 1) and Fig. 6b (Zone 2) suggest, the extent of human settlement in both zones increased significantly from 

1992 to 2013, indicating consecutive land development in these highly hurricane-prone zones. The trends in both zones follow 10 

a logarithmic relationship that increased sharply in earlier years then slowed down. Located on the frontmost land-sea border, 

Zone 1 receives the most frequent and intense hurricane hits, yet its degree of fitness (coefficient of determination 𝑅2 = 0.898) 

was higher than that of Zone 2 (𝑅2 = 0.791) in logarithmic regressions. With increased land development, we can conclude 

that the hurricane impacts on human settlement in these two zones are becoming more severe due to their higher hurricane-

exposure. Zone 3 and Zone 4 are located further away from coastal front. Although slight increase lit pixel percentage could 15 

be visually observed for Zone 3 (Fig. 6c) and Zone 4 (Fig. 6d), their logarithmic trends are not statistically significant at 

confidence level 𝛼 = 0.05 and therefore, the regression lines are not marked in these figures. Fig.6 reveals more significant 

increase of human settlement in areas closer to the coast front than inland during the 22-year period. The finding coincides 

with current literature in which studies reported the ever-growing population in coastal counties since 1990s (Crosset, 2005; 

Stewart et al., 2003).  20 
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Figure 6: Yearly statistics of percentage of area with VANUI larger than 0 in Zone 1 (a), Zone 2 (b), Zone 3 (c) and Zone 4 (d). In 

(a) and (b), the independent variable 𝒙 in the logarithmic regression model denotes the year sequence starting from 1992, meaning 

that 𝒙 = 𝟏 denotes year 1992, 𝒙 = 𝟐  denotes 1993 and the like. 

    The Mann-Kendall trend test coupled with Theil-Sen slope estimator extracted the areas with significant change (increase 5 

or decrease) of human settlement in the 22-year period. Zonal statistic was also summarized in the four hurricane-prone zones 

(Table 3). The net increase area calculates the area difference between pixels with significant increasing and decreasing trend. 

The net increase zonal percentage represents the percentage of net increase area in each predefined hurricane-prone zone. As 

Table 3 suggests, 4.22% of the area in Zone 1 experienced significant increase in human settlement, followed by 2.34% in 

Zone 2, 2.08% in Zone 3 and 1.65% in Zone 4. The statistics above suggests a noticeably positive relationship between the 10 

hurricane proneness of each zone and its percentage of area with significant increase in settlement. The sum of Theil-Sen slope, 

on the other hand, established the relationship between the hurricane proneness and the increase rate of settlement in each 

zone. Zone 1 receives the most hurricane hits, but has the strongest increase of settlement intensity, followed by Zone 2, Zone 
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3 and Zone 4. When all zones are considered, the study area along the Atlantic and Gulf coasts receives a net increase rate of 

2.22%.  

 

Table 3. 

Hurricane-prone zonal summary of Mann-Kendall and Theil-Sen test 

 

Hurricane-prone zones 
Zone size 

(𝑘𝑚2) 

Net increase area 

(𝑘𝑚2)a 

Net increase 

zonal percentage 

(%) 

Sum of Theil-Sen 

slope  

(per 100,000 𝑘𝑚2) 

Zone 1 312,453 13,178 4.22 9.02 

Zone 2 507,285 11,889 2.34 6.11 

Zone 3 620,108 12,907 2.08 5.42 

Zone 4 1,047,424 17,255 1.65 4.16 

study area 2,487,270 55,229 2.22 5.48 

aNet increase area in each hurricane-prone zone denotes the area difference in this zone between pixels 

with significant increasing trend and pixels with significant decreasing trend in their VANUI series.  

 

Fig. 7a demonstrates the Mann-Kendall trend map in the study area where red, blue and yellow in the figure represent pixel 5 

with significant increasing trend, significant decreasing trend and insignificant trend, respectively. Urban expansion of major 

cities in the south (the U.S. Southeast region), for example Atlanta, Houston and Dallas, can be clearly observed as their city 

cores are surrounded by extensive areas with significant increasing trend. Decrease in human settlement intensity was observed 

mostly in the north (the U.S. Northeast region; blue circle in Fig. 7a) where several cities in state of New York stand out, 

including Albany, Troy and Johnstown.  10 

Two city clusters were selected to demonstrate the spatial distributions of the Mann-Kendall trend and Theil-Sen slope: 

Metro Atlanta, Georgia (Fig. 7b1-b2) and Metro Dallas, Texas (Fig. 7c1-c2). For both cities, urban areas in 1992 were extracted 

from the Enhanced National Land Cover Data 1992 (NLCDe 92) released by U.S. Geological Survey (USGS) 

(https://water.usgs.gov/GIS/metadata/usgswrd/XML/nlcde92.xml), in which all classes including low intensity residential; 

high intensity residential; commercial/industrial/transportation and forest residential were counted as urban areas. Significant 15 

urban expansion can be observed for both cities but with different spatial patterns. Metro Atlanta expanded in a ring form 

while Metro Dallas expanded in all directions except southwest. Growth of human settlement was also observed for small 

towns surrounding urban clusters.  

For areas with significant Mann-Kendall trend, the Theil-Sen slope indicates the change rate of human settlement (either 

upwards or downwards). In Fig. 7b2 and Fig. 7c2, the development of Metro Atlanta and Metro Dallas followed obvious radial 20 

patterns: areas close to the urban core showing high increase rate of settlement (higher Theil-Sen slope) while areas away from 

urban core showing low increase rate. Since the VANUI has been normalized to [0,1] and the temporal period covers 22 years 
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(1992-2013), a pixel would have a Theil-Sen slope of 0.045 (1/22), under the assumption that its settlement intensity has 

steadily increased from 0 in 1992 to 1 in 2013. The maximum Theil-Sen slope reached 0.037 in both cities, indicating 

significant boost of human settlement intensity during the investigated period.  

 

Figure 7: Maps of the 22-year Mann-Kendall trend and Theil-Sen slope in the study area. Two subsets are selected: Dallas (trend 5 
map in b1 and slope map in b2) and Atlanta (trend map in c1 and slope map in c2).  

Metropolitan Statistical Areas (MSA) in the study area were selected for further analysis. Defined by U.S Office of 

Management and Budget (OMB), MSA represents a contiguous area of relatively high population density. From a total of 383 

predefined MSAs in the study area, the top 5 most populated MSAs in each part were selected. The lit pixel counts within the 

administrative boundary of each MSA in 1992, 2002 and 2013 were extracted. As Table 4 suggests, all selected MSAs in the 10 

north have decreased settlement intensities in two temporal periods (1992-2002 and 2002-2013). The only exception is the 

Washington-Arlington-Alexandria MSA in 2002-2013, during which its settlement intensity slightly increased by 2.5%. On 

the contrary, all of the top 5 most populated MSAs in the south witnessed significant increase of settlement intensity. MSA of 

Dallas-Fort Worth-Arlington, for instance, has experienced a 23.8% increase of settlement intensity in 1992-2002 and the 

increase rate has slowed down to 4.6% in the next period (2002-2013). MSA of Miami-Fort Lauderdale-West Palm Beach, 15 

however, is believed to have continuous boost of human settlement as its sum of VANUI has increased 12.6% in 1992-2002 

and 11.3% in 2002-2013. Although four out of five biggest MSAs in the south have seen reduced growth rate in 2002 -2013 

period (Table 4), Frey (2016) pointed that southern metropolitans have picked up their population increasing rate since 2015 

and this could be a sign that southern metropolitans are heading back to the growth levels they experienced prior to the U.S 

recession in 2007 to 2009. 20 

 

Table 4. 

Sum of VANUI value and change percentage in top 5 most populated MSA in the north and south of the study area 
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MSAsa 
Sum of VANUI 

in 1992 

Sum of VANUI 

in 2002 

Sum of VANUI 

in 2013 

% change 

(1992-2002) 

% of change  

(2002-2013) 

North      

New York-Newark-Jersey 

City 

3744.0 3307.2 3217.2 -11.67% -2.7% 

Washington-Arlington-

Alexandria 

1673.5 1611.4 1651.6 -3.7% +2.5% 

Philadelphia-Camden-

Wilmington 

2279.2 2068.1 1928.5 -9.3% -6.8% 

Boston-Cambridge-

Newton 

1498.9 1289.4 1182.3 -14.0% -8.3% 

Baltimore-Columbia-

Towson 

1035.5 961.2 831.2 -7.2% -13.5% 

South      

Dallas-Fort Worth-

Arlington 

3115.4 3857.1 4034.12 +23.8% +4.6% 

Houston-The Woodlands-

Sugar Land 

2687.0 3028.8 3143.9 +12.7% +3.8% 

Miami-Fort Lauderdale-

West Palm Beach 

1985.4 2262.7 2518.9 +12.6% +11.3% 

Atlanta-Sandy Spring-

Roswell 

2085.8 2398.8 2546.2 +14.0% +6.1% 

Tampa-St. Petersburg-

Clearwater 

1387.7 1511.9 1598.8 +9.0% +5.7% 

aAll administrative boundaries of selected MSAs were derived from U.S Census Bureau: 

https://www.census.gov/geo/maps data/data/cbf/cbf_msa.html. MSAs in the south were selected from Southeast and 

Gulf South of U.S and therefore, Washington-Arlington-Alexandria and Baltimore-Columbia-Towson were regarded as 

north MSAs in this study.    

 

The ongoing intensification on human settlement in high hurricane-exposure areas especially in the U.S. southeastern region 

potentially leads to the escalation in flood-induced losses. Despite the fact that the driving factors are complex and unclear, 

they reflect the micro to macro levels of socioeconomic development that has been prioritized in high hurricane-exposure areas 

in the last decades. Additionally, intensification of human settlement always couples with anthropogenic environmental 5 

changes (deforestation, wetland destruction, etc.), potentially resulting in more severe impacts during hurricanes. Although the 

investigated period of this study stops at year 2013 due to the termination of DMSP/OLS satellites, intensification of human 

settlement in areas with high hurricane-exposure (like Zone 1) is expected to continue and might even accelerate. In alignment 

with economic recovery, studies have shown escalated population shift towards the Atlantic and Gulf coast, after the stalling 

during the recession (Neumann et al., 2015).  10 

Coastal resilience becomes more complicated when the increasing pressure of human settlement in coastal zones is coupled 

with the more frequent and costly hurricanes. The three two years (2016-2018) have been recorded in a consecutive series of 

above-average damaging Atlantic hurricanes. The economic damage in CONUS in 2017 was among the costliest ever recorded 

on a nominal, inflation-adjusted and normalized basis (Klotzbach, 2018). What’s worse, 2018 was the most recent hurricane 
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season to feature four simultaneously named storms (Florence, Isaac, Helene and Joyce) after 2008. Although the future trend 

of hurricane seasons cannot be easily predicted, the implication of greater losses stands as the sizable growth of human 

settlement continues along the Atlantic and Gulf coasts. With the launch of the Suomi National Polar-orbiting Partnership 

(NPP) Satellite in October 2011, NTL data from the Visible Infrared Imaging Radiometer Suite onboard have become 

available. Its on-board calibration capacity and saturation-free merit have made NPP-VIIRS a new generation system of 5 

nighttime light observations (Elvidge et al., 2013). This new NTL data source will provide improved monitoring of human 

settlement and land development in hurricane-prone regions for advanced disaster assessment. 

6. Conclusion 

This study examined the spatiotemporal dynamics of nighttime satellite-derived human settlement in 1992-2013 in four zones 

at different levels of hurricane proneness on the U.S. Atlantic and Gulf Coasts. The hurricane-prone zones were delineated 10 

based on historical NAB-origin storm tracks from 1851-2016 via a wind speed weighted track density function. A three-step 

intercalibration framework was applied to intercalibrate the multi-satellite DMSP/OLS NTL series, and the NDVI-desaturated 

NTL products were extracted to derive VANUI, a popular index representing human settlement intensity. Mann-Kendall trend 

and Theil-Sen slope were further applied to identify the existing trend in the 22-year period.   

Zonal statistics indicate that in the frontmost zones along the coast, i.e., Zone 1 and Zone 2 receiving the most frequent 15 

hurricane hits, human settlement intensity has dramatically increased although the change rate has slowed down since the early 

2000s. The increase was not significant in areas farther away from the coasts (Zone 3 and Zone 4). Via trend analysis,  an areal 

percentage of 4.22% in Zone 1 experienced significant increase in settlement intensity, followed by 2.34% in Zone 2, 2.08% 

in Zone 3 and 1.65% in Zone 4, revealing higher pressure of human settlement and thus impacts from hurricanes in the 

frontmost coastal areas. Different from the zonal partitions, opposite trends of human settlement were observed from north 20 

(decreasing) to south (increasing) of the study region, which are supported by decadal census records. These opposite trends 

agree with the “Snow Belt-to-Sun Belt” U.S population shift reported in other studies. Along the Atlantic and Gulf coasts, the 

ongoing intensification of anthropogenic environmental changes coupled with more frequent and severe hurricanes is likely to 

cast more severe pressure on coastal resilience.  

 25 
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