Skip to main content

Action of Light on the Neuroendocrine Axis

  • Chapter
  • First Online:
Neuroendocrine Clocks and Calendars

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 10))

Abstract

Photoentrainment of the circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN) is fundamental for the stable regulation of neuroendocrine function underlying physiological functions such as metabolism, sleep, immune responses, and reproduction. Masking by light directly suppresses melatonin secretion independent of the circadian system, with impact on several neuroendocrine axes. This chapter describes recent findings in anatomy and physiology on how light mediates its effects on SCN-regulated timing of the neuroendocrine system, including the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-thyroid (HPT) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and melatonin and arginine-vasopressin (AVP) secretion. In modern societies, artificial light at night (ALAN) seems to affect circadian and neuroendocrine systems, and should be considered in the understanding the health problems of the industrialized human population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt J (2009) Melatonin. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin, pp 2297–2302

    Chapter  Google Scholar 

  • Bechtold DA, Brown TM, Luckman SM, Piggins HD (2008) Metabolic rhythm abnormalities in mice lacking VIP-VPAC2 signaling. Am J Physiol Regul Integr Comp Physiol 294(2):R344–RR51

    Article  CAS  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Binder MD, Hirokawa N, Windhorst U (2009) Neuroendocrine axis. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin

    Chapter  Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challet E (2015) Keeping circadian time with hormones. Diabetes Obes Metab 17(Suppl 1):76–83. https://doi.org/10.1111/dom.12516

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU (1999) PACAP: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci U S A 96(23):13409–13414

    Article  Google Scholar 

  • Cinzano PFF, Elvidge CD (2001) The first world atlas of the artificial night sky brightness. Mon Not R Astron Soc 328:689–707

    Article  Google Scholar 

  • Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS et al (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332(1):6–11

    Article  CAS  PubMed  Google Scholar 

  • Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW et al (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181

    Article  CAS  PubMed  Google Scholar 

  • Daan S, Aschoff J (2001) The entrainment of circadian systems. In: Takahashi JS, Turek FW, Moore RY (eds) Circadian clocks. Handbook of behavioral neurobiology. Kluwer Academic/Plenum Publisher, New York, pp 7–43

    Chapter  Google Scholar 

  • Daan S, Pittendrigh CS (1976a) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106:253–266

    Article  Google Scholar 

  • Daan S, Pittendrigh CS (1976b) A functional analysis of the circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker and clock. J Comp Physiol 106:253–266

    Article  Google Scholar 

  • Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J et al (2005) Melanopsin-expressing ganglion cells in primate retina signal color and irradiance and project to the LGN. Nature 433(7027):749–754

    Article  CAS  PubMed  Google Scholar 

  • Do MT, Yau KW (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90(4):1547–1581

    Article  CAS  PubMed  Google Scholar 

  • Duffy JF, Czeisler CA (2009) Effect of light on human circadian physiology. Sleep Med Clin 4(2):165–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67(1):49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann M, Landgraf R (1997) Intracerebral release of vasopressin and oxytocin: new aspects of the old concept of neurosecretion. In: Korf H-W, Usadel K-H (eds) Neuroendocrinology Retrospect and perspectives. Springer, Berlin, pp 87–97

    Google Scholar 

  • Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A et al (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A 107(43):18664–18669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  CAS  PubMed  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90(3):1063–1102

    Article  CAS  PubMed  Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 12:1165

    Article  Google Scholar 

  • Grattan DR (2015) 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 226(2):T101–T122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453(7191):102–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannibal J (2002) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 309(1):73–88

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J (2006) Roles of PACAP-containing retinal ganglion cells in circadian timing. Int Rev Cytol 251:1–39

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J (2016) PACAP in the circadian timing system: learning from knockout models. Pituitary adenylate activating polypeptide—PACAP. Current topics in neurotoxicity. Springer, Switzerland, pp 227–237

    Book  Google Scholar 

  • Hannibal J, Fahrenkrug J (2004) Target areas innervated by PACAP immunoreactive retinal ganglion cells. Cell Tissue Res 316(1):99–113

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Brabet P, Jamen F, Nielsen HS, Journot L, Fahrenkrug J (2001) Dissociation between light induced phase shift of the circadian rhythm and clock gene expression in mice lacking the PACAP type 1 receptor (PAC1). J Neurosci 21(13):4883–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J (2002) The photopigment melanopsin is exclusively present in PACAP containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22:RC191:1–7

    Article  Google Scholar 

  • Hannibal J, Brabet P, Fahrenkrug J (2008) Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. Am J Physiol Regul Integr Comp Physiol 295(6):R2050–R20R8

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Hsiung HM, Fahrenkrug J (2011) Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice. Am J Physiol Regul Integr Comp Physiol 300(3):R519–R530. https://doi.org/10.1152/ajpregu.00599.2010

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD (2014) Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 522(10):2231–2248

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF (2017) Melanopsin expressing human retinal ganglion cells: subtypes, distribution, and intraretinal connectivity. J Comp Neurol 525(8):1934–1961. https://doi.org/10.1002/cne.24181

    Article  CAS  PubMed  Google Scholar 

  • Hansen J (2001) Light at night, shiftwork, and breast cancer risk. J Natl Cancer Inst 93(20):1513–1515

    Article  CAS  PubMed  Google Scholar 

  • Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Schmedt C et al (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 3(6):e2451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW et al (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3):326–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazlerigg D, Loudon A (2008) New insights into ancient seasonal life timers. Curr Biol 18(17):R795–R804. https://doi.org/10.1016/j.cub.2008.07.040

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Watson TS, Foster RG, Peirson SN, Hankins MW (2013) Nonuniform distribution and spectral tuning of photosensitive retinal ganglion cells of the mouse retina. Curr Biol 23(17):1696–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson SN (2015) Photic regulation of clock systems. Methods Enzymol 552:125–143. https://doi.org/10.1016/bs.mie.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  • Husse J, Leliavski A, Tsang AH, Oster H, Eichele G (2014) The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 28(11):4950–4960. https://doi.org/10.1096/fj.14-256594

    Article  CAS  PubMed  Google Scholar 

  • Hut RA (2011) Photoperiodism: shall EYA compare thee to a summer’s day? Curr Biol 21(1):R22–R25. https://doi.org/10.1016/j.cub.2010.11.060

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Buijs RM (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309(1):109–118. https://doi.org/10.1007/s00441-002-0577-0

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M et al (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21(6):458–469. https://doi.org/10.1177/0748730406293854

    Article  CAS  PubMed  Google Scholar 

  • Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S, Wu Z et al (2016) A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. Elife 5:e15392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennett JE, Poletini MO, Freeman ME (2008) Vasoactive intestinal polypeptide modulates the estradiol-induced prolactin surge by entraining oxytocin neuronal activity. Brain Res 1196:65–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiessling S, Sollars PJ, Pickard GE (2014) Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLoS One 9(3):e92959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus. The mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Klerman EB, Shanahan TL, Brotman DJ, Rimmer DW, Emens JS, Rizzo JF III et al (2002) Photic resetting of the human circadian pacemaker in the absence of conscious vision. J Biol Rhythms 17(6):548–555

    Article  CAS  PubMed  Google Scholar 

  • Kloog I, Stevens RG, Haim A, Portnov BA (2010) Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control 21(12):2059–2068. https://doi.org/10.1007/s10552-010-9624-4

    Article  PubMed  Google Scholar 

  • Larsen PJ, Enquist LW, Card JP (1998) Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing. Eur J Neurosci 10(1):128–145

    Article  CAS  PubMed  Google Scholar 

  • Liao HW, Ren X, Peterson BB, Marshak DW, Yau KW, Gamlin PD et al (2016) Melanopsin-expressing ganglion cells in macaque and human retinas form two morphologically distinct populations. J Comp Neurol 524(14):2845–2872. https://doi.org/10.1002/cne.23995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln GA, Clarke IJ, Hut RA, Hazlerigg DG (2006) Characterizing a mammalian circannual pacemaker. Science 314(5807):1941–1944. https://doi.org/10.1126/science.1132009

    Article  CAS  PubMed  Google Scholar 

  • Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA et al (2014) Measuring and using light in the melanopsin age. Trends Neurosci 37(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34(7):349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RY (1995) Organization of the mammalian circadian system. Ciba Found Symp 183:88–99

    CAS  PubMed  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352:351–366

    Article  CAS  PubMed  Google Scholar 

  • Morin LP, Allen CN (2005) The circadian visual system, 2005. Brain Res Rev 51(1):1–60

    Article  PubMed  Google Scholar 

  • Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16(4):415–429

    Article  CAS  PubMed  Google Scholar 

  • Navara KJ, Nelson RJ (2007) The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res 43(3):215–224. https://doi.org/10.1111/j.1600-079X.2007.00473.x

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ, Zucker I (1981) Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp Biochem Physiol 69A:145–148

    Article  Google Scholar 

  • Ouyang JQ, Davies S, Dominoni D (2018) Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. J Exp Biol 221(Pt 6):jeb156893

    Article  PubMed  PubMed Central  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM et al (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301(5632):525–527

    Article  CAS  PubMed  Google Scholar 

  • Pevet P, Challet E (2011) Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 105(4–6):170–182. https://doi.org/10.1016/j.jphysparis.2011.07.001

    Article  PubMed  Google Scholar 

  • Pickard GE (1985) Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci Lett 55:211–217

    Article  CAS  PubMed  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95(1):340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20(0270-6474):600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redlin U, Mrosovsky N (1999) Masking by light in hamsters with SCN lesions. J Comp Physiol A 184(4):439–448

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology (Bethesda) 29(5):325–333. https://doi.org/10.1152/physiol.00011.2014

    Article  CAS  Google Scholar 

  • Roenneberg T, Foster RG (1997) Twilight times: light and the circadian system. Photochem Photobiol 66(5):549–561

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Cano G, Scammell TE (2005a) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 493(1):92–98

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005b) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29(2):476–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivers BD, Gorcs TJ, Gottschall PE, Arimura A (1991) Two high affinity binding sites for pituitary adenylate cyclase- activating polypeptide have different tissue distributions. Endocrinology 128:3055–3065

    Article  CAS  PubMed  Google Scholar 

  • Van Dycke KC, Rodenburg W, van Oostrom CT, van Kerkhof LW, Pennings JL, Roenneberg T et al (2015) Chronically alternating light cycles increase breast cancer risk in mice. Curr Biol 25(14):1932–1937. https://doi.org/10.1016/j.cub.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  • Vosko AM, Schroeder A, Loh DH, Colwell CS (2007) Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 152(2–3):165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Recommended Further Reading

  • Do MT, Yau KW (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90(4):1547–1581. A small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. This review describes the anatomy and physiology of this remarkable system.

    Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90(3):1063–1102. This paper reviews the anatomy and physiology of the circadian timing system in mammals.

    Google Scholar 

  • Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M et al (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21(6):458–469. This review considers the anatomical connections and neurotransmitters used by the SCN to control the daily rhythms in hormone release.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Biotechnology Center for Cellular Communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hannibal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hannibal, J. (2020). Action of Light on the Neuroendocrine Axis. In: Ebling, F.J.P., Piggins, H.D. (eds) Neuroendocrine Clocks and Calendars. Masterclass in Neuroendocrinology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-55643-3_8

Download citation

Publish with us

Policies and ethics