Skip to main content

Impact of Lighting on Flora and Fauna

  • Living reference work entry
  • First Online:

Abstract

Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.

This is a preview of subscription content, log in via an institution.

Abbreviations

ALAN:

Artificial light at night

BAT:

Brown adipose tissuelx lux

UV:

Ultraviolet

WAT:

White adipose tissue

References

  • Ahmad M, Cashmore AR (1996) Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30(5):851–861

    Article  Google Scholar 

  • Altshuler DL (2001) Ultraviolet reflectance in fruits, ambient light composition and fruit removal in a tropical forest. Evol Ecol Res 3(7):767–778

    Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28(8):949–964

    Article  Google Scholar 

  • Aubé M (2015) Physical behaviour of anthropogenic light propagation into the nocturnal environment. Philos Trans R Soc Lond B Biol Sci 370(1667):2014.0117

    Article  Google Scholar 

  • Aubé M, Roby J, Kocifaj M (2013) Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility. Plos One 8(7):e67789

    Article  Google Scholar 

  • Aubrecht C, Elvidge CD, Ziskin D, Longcore T, Rich C (2008) “When the lights stay on” – a novel approach to assessing human impact on the environment. Earth. http://www.earthzine.org/2008/12/31/when-the-lights-stay-on-a-novel-approach-toassessing-

  • Aubrecht C, Malanding J, Sherbinin De A (2010) Global assessment of light pollution impact on protected areas. Retrieved from http://www.ciesin.columbia.edu/publications.html

  • Auldridge ME, Forest KT (2011) Bacterial phytochromes: more than meets the light. Crit Rev Biochem Mol Biol 46(1):67–88

    Article  Google Scholar 

  • Avilés JM, Parejo D (2013) Colour also matters for nocturnal birds: Owlet bill coloration advertises quality and influences parental feeding behaviour in little owls. Oecologia 173(2):399–408

    Article  Google Scholar 

  • Baker BJ, Richardson JML (2006) The effect of artificial light on male breeding-season behaviour in green frogs, Rana clamitans melanota. Can J Zool 84(10):1528–1532

    Article  Google Scholar 

  • Beier P (2006) Effects of artificial night lighting on terrestrial mammals. In: Rich C, Longcore T (eds) Ecological Consequences of Artificial Night Lighting. Island Press, Washington, DC, pp 19–42

    Google Scholar 

  • Bennie J, Davies TW, Cruse D, Inger R, Gaston KJ (2015) Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem. Philos Trans R Soc London B Biol Sci 370:20140131

    Article  Google Scholar 

  • Bennett ATD, Cuthill IC (1994) Ultraviolet vision in birds : what is its function? Vision Res 34(11):1471–1478

    Article  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal Ganglion cells that set the Circadian clock. Science 295(5557):1070–1073

    Article  Google Scholar 

  • Bishop JE (1969) Light control of aquatic insect activity and drift. Ecology 50:371–380

    Article  Google Scholar 

  • Boeuf G, Le Bail P-Y (1999) Does light have an influence on fish growth? Aquaculture 177(1–4):129–152

    Article  Google Scholar 

  • Brainard GC, Hanifin JP, Rollag MD, Greeson J, Byrne B, Glickman G, Gerner E, Sanford B (2001) Human melatonin regulation is not mediated by the three cone photopic visual system. J Clin Endocrinol Metab 86(1):433–436

    Article  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7(5):204–210

    Article  Google Scholar 

  • Brüning A, Hölker F, Wolter C (2011) Artificial light at night: implications for early life stages development in four temperate freshwater fish species. Aquat Sci 73(1):143–152

    Article  Google Scholar 

  • Brüning A, Hölker F, Franke S, Preuer T, Kloas W (2015) Spotlight on fish: light pollution affects circadian rhythms of European perch but does not cause stress. Sci Total Environ 511:516–522

    Article  Google Scholar 

  • Brüning A, Hölker F, Franke S, Kleiner W, Kloas W (2016) Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. Sci Total Environ 543:214–222

    Article  Google Scholar 

  • Buchanan BW (2006) Observed and potential effects of artificial night lighting on anuran amphibians. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 192–220

    Google Scholar 

  • Bünning E, Moser I (1969) Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction. Proc Natl Acad Sci 62(4):1018–1022

    Article  Google Scholar 

  • Canavero A, Arim M (2009) Clues supporting photoperiod as the main determinant of seasonal variation in amphibian activity. J Nat Hist 43(47–48):2975–2984

    Article  Google Scholar 

  • Carrillo-Vico A, Lardone P, Álvarez-Sánchez N, Álvarez-Sánchez A, Guerrero J (2013) Melatonin: buffering the immune system. Int J Mol Sci 14(4):8638–8683

    Article  Google Scholar 

  • Cartron L, Josef N, Lerner A, McCusker SD, Darmaillacq A-S, Dickel L, Shashar N (2013) Polarization vision can improve object detection in turbid waters by cuttlefish. J Exp Mar Biol Ecol 447:80–85

    Article  Google Scholar 

  • Cathey HM, Campbell LE (1975) Security lighting and its impact on the landscape. J Arboric 1(1):181–187

    Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  Google Scholar 

  • CIE 115 (2010) Lighting of roads for motor and pedestrian traffic

    Google Scholar 

  • Cinzano P, Falchi F, Elvidge CD (2001) The first World Atlas of the artificial night sky brightness. Mon Not R Astron Soc 707:689–707

    Article  Google Scholar 

  • Collin SP, Davies WL, Hart NS, Hunt DM (2009) The evolution of early vertebrate photoreceptors. Philos Trans R Soc Lond Ser B Biol Sci 364(1531):2925–2940

    Article  Google Scholar 

  • Cronin TW, Caldwell RL, Marshall J (2010) Sensory adaptation: tunable colour vision in a mantis shrimp. Nature 411(6837):527

    Google Scholar 

  • Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B (2014) Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behav Ecol 25(5):1037–1047

    Article  Google Scholar 

  • Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ (2003) Insect orientation to polarized moonlight. Nature 424(6944):33–33

    Article  Google Scholar 

  • Danks HV (2005) How similar are daily and seasonal biological clocks? J Insect Physiol 51(6):609–619

    Article  Google Scholar 

  • Davies TW, Bennie J, Inger R, de Ibarra NH, Gaston KJ (2013) Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Glob Chang Biol 19(5):1417–1423

    Article  Google Scholar 

  • Davies TW, James PD, Bennie J, Gaston KJ (2014) The nature, extent, and ecological implications of marine light pollution. Front Ecol Environ 12(6):347–355

    Article  Google Scholar 

  • De Jong M, Jeninga L, Ouyang JQ, van Oers K, Spoelstra K, Visser ME (2016) Dose-dependent responses of avian daily rhythms to artificial light at night. Physiol Behav 155:172–179

    Article  Google Scholar 

  • Deveson SL, Arendt J, Forsyth IA (2000) Sensitivity of goats to a light pulse during the night as assessed by suppression of melatonin concentrations in the plasma. J Pineal Res 177(1990):169–177

    Google Scholar 

  • Dominoni DM, Partecke J (2015) Does light pollution alter daylength ? A test using light loggers on free-ranging European blackbirds (Turdus merula). Philos Trans R Soc Lond Ser B Biol Sci 370:20140118

    Article  Google Scholar 

  • Dominoni DM, Quetting M, Partecke J (2013) Artificial light at night advances avian reproductive physiology Artificial light at night advances avian reproductive physiology. Proc R Soc B Biol Sci 280:20123017

    Article  Google Scholar 

  • Döring TF (2014) How aphids find their host plants, and how they don’t. Ann Appl Biol 165(1):3–26

    Article  Google Scholar 

  • Durrant J, Michaelides EB, Rupasinghe T, Tull D, Green MP, Jones TM (2015) Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus. Peer J 3:e1075

    Article  Google Scholar 

  • Eisenbeis G (2006) Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 191–198

    Google Scholar 

  • Eisenbeis G, Eick K (2011) Studie zur Anziehung nachtaktiver Insekten an die Straßenbeleuchtung unter Einbeziehung von LEDs. Natur Landschaft 86(7):298–306

    Google Scholar 

  • Ekström P, Meissl H (2003) Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond Ser B Biol Sci 358(1438):1679–1700

    Article  Google Scholar 

  • Fan X-X, Xu Z-G, Liu X-Y, Tang C-M, Wang L-W, Han X (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55

    Article  Google Scholar 

  • Fonken LK, Lieberman RA, Weil ZM, Nelson RJ (2013) Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology 154(10):3817–3825

    Article  Google Scholar 

  • Frank KD (2006) Effects of artificial night lighting on moths. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 305–344

    Google Scholar 

  • Fulgione D, Trapanese M, Maselli V, Rippa D, Itri F, Avallone B, Van Damme R, Monti DM, Raia P (2014) Seeing through the skin: dermal light sensitivity provides cryptism in moorish gecko. J Zool 294(2):122–128

    Article  Google Scholar 

  • Gaston KJ, Bennie J, Davies TW, Hopkins J (2013) The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol Rev Camb Philos Soc 88(4):912–927

    Article  Google Scholar 

  • Gaston KJ, Visser ME, Hölker F (2015) The biological impacts of artificial light at night : the research challenge. Philos Trans R Soc Lond Ser B Biol Sci 370:20140133

    Article  Google Scholar 

  • Geffen van KG (2015) Moths in illuminated nights -Artificial night light effects on moth ecology. Doctoral thesis. Wageningen University

    Google Scholar 

  • Gerkema MP, Davies WIL, Foster RG, Menaker M, Hut RA (2013) The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc R Soc B Biol Sci 280(1765):20130508

    Article  Google Scholar 

  • Gerlach T, Aurich JE (2000) Regulation of seasonal reproductive activity in the stallion, ram and hamster. Anim Reprod Sci 58(3–4):197–213

    Article  Google Scholar 

  • Gerlach T, Sprenger D, Michiels NK (2014) Fairy wrasses perceive and respond to their deep red fluorescent coloration. Proc R Soc B Biol Sci 281(1787):2014.0787

    Article  Google Scholar 

  • Giraud E, Verméglio A (2008) Bacteriophytochromes in anoxygenic photosynthetic bacteria. Photosynth Res 97(2):141–153

    Article  Google Scholar 

  • Glösmann M, Steiner M, Peichl L, Ahnelt PK (2008) Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. J Vis 8(4):23

    Article  Google Scholar 

  • Gorresen MP, Cryan PM, Dalton DC, Wolf S, Bonaccorso FJ (2015) Ultraviolet vision may be widespread in bats. Acta Chiropterologica 17(1):193–198

    Article  Google Scholar 

  • Hadderingh RH, Van Aerssen GHFM, De Beijer RFLJ, Van Der Velde G (1999) Reaction of silver eels to artificial light sources and water currents: an experimental deflection study. Regul Rivers: Res Manage 15(4):365–371

    Article  Google Scholar 

  • Hagen O, Santos RM, Schlindwein MN, Viviani VR (2015) Artificial night lighting reduces firefly (Coleoptera : Lampyridae) occurrence in Sorocaba, Brazil. Adv Entomol 3(01):24–32

    Article  Google Scholar 

  • Hale JD, Fairbrass AJ, Matthews TJ, Davies G, Sadler JP (2015) The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob Chang Biol 21(7):2467–2478

    Google Scholar 

  • Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31(1):27–36

    Article  Google Scholar 

  • Hattar S, Liao H-W, Takao M, Berson DM, Yau K-W (2002) Melanopsin-containing retinal ganglion cells : architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1071

    Article  Google Scholar 

  • Heiling AM (1999) Why do nocturnal orb-web spiders (Araneidae) search for light? Behav Ecol Sociobiol 46(1):43–49

    Article  Google Scholar 

  • Hölker F, Moss T, Griefahn B, Kloas W, Voigt CC (2010a) The dark side of light : a transdisciplinary research agenda for light. Ecology And Society 15(4):Art 13

    Google Scholar 

  • Hölker F, Wolter C, Perkin EK, Tockner K (2010b) Light pollution as a biodiversity threat. Trends Ecol Evol 12:681–682

    Article  Google Scholar 

  • Hori M, Shibuya K, Sato M, Saito Y (2014) Lethal effects of short-wavelength visible light on insects. Sci Rep 4:7383

    Article  Google Scholar 

  • Horváth G (2014) Polarized light and polarization vision in animal sciences, 2nd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Horváth G, Csabai Z (2014) Polarization vision of aquatic insects. In: Horváth G, (eds) Polarized light and polarization vision in animal sciences. Springer Science & Business Media. Berlin/Heidelberg/New York, pp 113–145

    Google Scholar 

  • Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7(6):317–325

    Article  Google Scholar 

  • Itoh MT, Hattori A, Sumi Y, Suzuki T (1995) Day-night changes in melatonin levels in different organs of the cricket (Gryllus bimaculatus). J Pineal Res 18(3):165–169

    Article  Google Scholar 

  • Jacobs GH (1994) Variations in primate color vision: mechanisms and utility. Evol Anthropol Issues News Rev 3(6):196–205

    Article  Google Scholar 

  • Jacobs GH (2009) Evolution of colour vision in mammals. Philos Trans R Soc Lond B Biol Sci 364(1531):2957–2967

    Article  Google Scholar 

  • Jahan SMH, Lee G-S, Lee S, Lee K-Y (2014) Acquisition of Tomato yellow leaf curl virus enhances attraction of Bemisia tabaci to green light emitting diodes. J Asia Pac Entomol 17(1):79–82

    Article  Google Scholar 

  • Johansen NS, Vänninen I, Pinto DM, Nissinen AI, Shipp L (2011) In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops. Ann Appl Biol 159(1):1–27

    Article  Google Scholar 

  • Johanson U, Gehrke C, Björn LO, Callaghan TV, Sonesson M (1995) The effects of enhanced UV-B radiation on a subarctic heath ecosystem. R Swedish Acad Sci 24(2):106–111

    Google Scholar 

  • Johnson SD, Andersson S (2002) A simple field method for manipulating ultraviolet reflectance of flowers. Can J Bot 80(12):1325–1328

    Article  Google Scholar 

  • Juell J-E, Fosseidengen JE (2004) Use of artificial light to control swimming depth and fish density of Atlantic salmon (Salmo salar) in production cages. Aquaculture 233(1–4):269–282

    Article  Google Scholar 

  • Kelber A, Roth LSV (2006) Nocturnal colour vision-not as rare as we might think. J Exp Biol 209(5):781–788

    Article  Google Scholar 

  • Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision–behavioural tests and physiological concepts. Biol Rev 78(1):81–118

    Article  Google Scholar 

  • Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J Cell Mol Biol 67(2):195–207

    Article  Google Scholar 

  • Kempenaers B, Borgström P, Loës P, Schlicht E, Valcu M (2010) Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr Biol 20(19):1735–1739

    Article  Google Scholar 

  • Kleinlogel S, White AG (2008) The secret world of shrimps: polarisation vision at its best. PLoS One 3(5):e2190

    Article  Google Scholar 

  • Kleinteich A, Schneider JM (2011) Developmental strategies in an invasive spider: constraints and plasticity. Ecol Entomol 36(1):82–93

    Article  Google Scholar 

  • Kolkovski S, Dabrowski K (1998) Off-season spawning of yellow perch. Prog Fish Cult 60(2):133–136

    Article  Google Scholar 

  • Krijgsveld KL, Fijn RC, Lensink R (2015) Occurrence of peaks in songbird migration at rotor heights of offshore wind farms in the southern North Sea. Report

    Google Scholar 

  • Kritsky MS (1984) The blue light responses in evolutionary studies. In: Senger H (ed) Blue light Effects in biological systems. Springer, Berlin/Heidelberg, pp 3–5

    Chapter  Google Scholar 

  • Kuechly HU, Kyba CCM, Ruhtz T, Lindemann C, Wolter C et al (2012) Arial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens Environ 126:39–50

    Article  Google Scholar 

  • Kummu M, De Moel H, Ward PJ, Varis O (2011) How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS One 6(6):e20578

    Article  Google Scholar 

  • Kurvers RHJM, Hölker F (2014) Bright nights and social interactions: a neglected issue. Behav Ecol 26(2):334–339

    Article  Google Scholar 

  • Kyba CCM, Hölker F (2013) Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Landsc Ecol 28(9):1637–1640

    Article  Google Scholar 

  • Kyba CCM, Ruhtz T, Fischer J, Hölker F (2011) Lunar skylight polarization signal polluted by urban lighting. J Geophys Res 116(D24):1–7

    Article  Google Scholar 

  • Kyba CCM, Wagner JM, Kuechly HU, Walker CE, Elvidge CD et al (2013) Citizen science provides valuable data for monitoring global night sky luminance. Sci Rep 3:1835

    Article  Google Scholar 

  • Kyba CCM, Hänel A, Hölker F (2014) Redefining efficiency for outdoor lighting. Energy Environ Sci 7(6):1806–1809

    Article  Google Scholar 

  • Kyba CCM, Garz S, Kuechly H, De Miguel A, Zamorano J, Fischer J, Hölker F (2015a) High-resolution imagery of earth at night: new sources, opportunities and challenges. Remote Sens 7(1):1–23

    Article  Google Scholar 

  • Kyba CCM, Tong KP, Bennie J, Birriel I, Birriel JJ et al (2015b) Worldwide variations in artificial skyglow. Sci Rep 5:8409

    Article  Google Scholar 

  • Le Tallec T, Perret M, Théry M (2013) Light pollution modifies the expression of daily rhythms and behavior patterns in a nocturnal primate. Plos One 8(11):e79250

    Article  Google Scholar 

  • Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M (2008) Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 21(22):3536–3543

    Article  Google Scholar 

  • Lerner A, Sabbah S, Erlick C, Shashar N (2011) Navigation by light polarization in clear and turbid waters. Philos Trans R Soc Lond B Biol Sci 366(1565):671–679

    Article  Google Scholar 

  • Litman BJ, Mitchell DC (1996) Rhodopsin structure and function. Biomembranes A Multi-Volume Treatise 2:1–32

    Article  Google Scholar 

  • Lohman KJ (2010) Q&A: animal behaviour: magnetic-field perception. Nature 464(7292):1140–1142

    Article  Google Scholar 

  • Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2(4):191–198

    Article  Google Scholar 

  • Lythgoe JN (1988) Light and vision in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 57–87

    Chapter  Google Scholar 

  • MacQuarrie DW, Vanstone WE, Markert JR (1979) Photoperiod induced off-season spawning of pink salmon (Oncorhynchus gorbuscha). Aquaculture 18(4):289–302

    Article  Google Scholar 

  • Martin G, Rojas LM, Ramírez Y, McNeil R (2004) The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwissenschaften 91(1):26–29

    Article  Google Scholar 

  • Martin M, Le Galliard J-F, Meylan S, Loew ER (2015) The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. J Exp Biol 218(3):458–465

    Article  Google Scholar 

  • Massa GD, Drive AM, Lafayette W, Kim H, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. Hortic Sci 43(7):1951–1956

    Google Scholar 

  • Matthews RW, Matthwes JR (2009) Light reception. In: Insect behaviour, 2nd edn. Springer, Dordrecht/Heidelberg/London/New York, pp 268–277

    Google Scholar 

  • Matzke EB (1936) The effect of street lights in delaying leaf-fall in certain trees. Am J Bot 23(6):446–452

    Article  Google Scholar 

  • Mazza CA, Izaguirre MM, Zavala J, Ana LS, Ballaré CL (2002) Insect perception of ambient ultraviolet-B radiation. Ecol Lett 5(6):722–726

    Article  Google Scholar 

  • McAlary FA, McFarland WN (1993) The effect of light and darkness on hatching in the pomacentrid Abudefduf saxatilis. Environ Biol Fishes 37(3):237–244

    Article  Google Scholar 

  • McClung CR (2006) Plant Circadian rhythms. Plant Cell 18(4):792–803

    Article  Google Scholar 

  • McMahon DG, Iuvone PM, Tosini G (2014) Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 39:58–76

    Article  Google Scholar 

  • Mège P, Ödeen A, Théry M, Picard D, Secondi J (2016) Partial Opsin sequences suggest UV-sensitive vision is widespread in Caudata. Evol Biol 43:109–118

    Google Scholar 

  • Moore MV, Pierce SM, Walsh HM, Kvalvik SK, Lim JD (2000) Urban light pollution alters the diel vertical migration of Daphnia. Internationale Vereinigung Fur Theoretische Und Angewandte Limnologie Verhandlungen 27(2):779–782

    Google Scholar 

  • Myrberg AA, Fuiman LA (2002) The sensory world of coral reef fishes. In: Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic, San Diego, pp 123–148

    Chapter  Google Scholar 

  • Nash J, Price J, Cox RM (2015) Photoperiodic hatching rhythms suggest Circadian entrainment of Anolis sagrei Eggs. J Herpetol 29(4):611–615

    Article  Google Scholar 

  • Navarro-Barranco C, Hughes LE (2015) Effects of light pollution on the emergent fauna of shallow marine ecosystems: Amphipods as a case study. Mar Pollut Bull 94(1):235–240

    Article  Google Scholar 

  • Nightingale B, Longcore T, Simenstad CA (2006) Artificial night lighting and fishes. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 257–276

    Google Scholar 

  • Nordt A, Klenke R (2013) Sleepless in town – drivers of the temporal shift in Dawn song in Urban European Blackbirds. Environ Res 8(8):1–10

    Google Scholar 

  • Ogden LJE (1996) Collision course : the hazards of lighted structures and windows to migrating birds collision course. http://digitalcommons.unl.edu/flap/3

  • Ollivier FJ, Samuelson DA, Brooks DE, Lewis PA, Kallberg ME, Komaromy AM (2004) Comparative morphology of the tapetum lucidum (among selected species). Vet Ophthalmol 7(1):11–22

    Article  Google Scholar 

  • Ouyang J, De Jong M, Hau M, Visser ME, Van Grunsven RHA, Spoelstra K (2015) Stressful colours: corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination. Biol Lett 11(18):20150517

    Article  Google Scholar 

  • Pawson SM, Bader MF (2014) LED lighting increases the ecological impact of light pollution irrespective of color temperature. Ecol Appl 24(7):1561–1568

    Article  Google Scholar 

  • Perkin EK, Hölker F, Richardson JS, Sadler JP, Wolter C, Tockner K (2011) The influence of artificial light on stream and riparian ecosystems : questions, challenges, and perspectives. Ecosphere 2(11): art122

    Google Scholar 

  • Perry G, Fisher RN (2006) Night lights and reptiles: observed and potential effects. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 169–191

    Google Scholar 

  • Perry G, Buchanan BW, Fisher RN, Salmon M, Wise SE (2008) Effects of artificial night lighting on amphibians and reptiles in urban environments. Urban Herpetol 3:239–256

    Google Scholar 

  • Pévet P, Agez L, Bothorel B, Saboureau M, Gauer F, Laurent V, Masson-Pévet M (2006) Melatonin in the multi-oscillatory mammalian circadian world. Chronobiol Int 23(1–2):39–51

    Article  Google Scholar 

  • Poot H, Ens BJ, De Vries H, Donners M, Wernand MR, Marquenie JM (2008) Green light for nocturnally migrating birds. Ecol Soc 13(2):47

    Google Scholar 

  • Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28(1):337–364

    Article  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Pa W, Moreira EF, Rollag MD (2000) A novel human Opsin in the inner retina. J Neurosci 20(2):600–605

    Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakière B et al (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J Cell Mol Biol 52(4):640–657

    Article  Google Scholar 

  • Raap T, Pinxten R, Eens M (2015) Light pollution disrupts sleep in free-living animals. Sci Rep 5:13557

    Article  Google Scholar 

  • Reiter RJ, Sanchez-Barcelo E, Mediavilla M, Gitto E, Korkmaz A (2011) Circadian mechanisms in the regulation of melatonin synthesis: disruption with light at night and the pathophysiological consequences. J Exp Integrat Med 1(1):13–22

    Article  Google Scholar 

  • Riley JR, Reynolds DR, Farmery MJ (1983) Observations of the flight behavior of the Armyworm Moth, Spodoptera-Exempta, at an emergence site using radar and infrared optical techniques. Ecol Entomol 8:395–418

    Article  Google Scholar 

  • Riley WD, Davison PI, Maxwell DL, Newman RC, Ives MJ (2015) A laboratory experiment to determine the dispersal response of Atlantic salmon (Salmo salar) fry to street light intensity. Freshw Biol 60(5):1016–1028

    Article  Google Scholar 

  • Rockwell NC, Lagarias JC (2010) A brief history of phytochromes. Chemphyschem 11(6):1172–1180

    Article  Google Scholar 

  • Roden LC, Song H, Jackson S, Morris K, Carre IA (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc Natl Acad Sci 99(20):13313–13318

    Article  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    Article  Google Scholar 

  • Rotics S, Dayan T, Kronfeld-Schor N (2011) Effect of artificial night lighting on temporally partitioned spiny mice. J Mammal 62(1):159–168

    Article  Google Scholar 

  • Sabbah S, Lerner A, Erlick C, Shashar N (2005) Under water polarization vision- a physical examination. Recent Res Develop Exp Theoret Biol 1:123–176

    Google Scholar 

  • Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C (2010) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151(3):1019–1029

    Article  Google Scholar 

  • Salmon M (2006) Protecting sea turtles from artificial night lighting at Florida’s oceanic beaches. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 141–168

    Google Scholar 

  • Sanabria EA, Quiroga LB (2011) Change in the thermal biology of tadpoles of Odontophrynus occidentalis from the Monte desert, Argentina: responses to photoperiod. J Ther Biol 36(5):288–291

    Article  Google Scholar 

  • Saunders DS (2002) Insect clocks. Elsevier, Amsterdam

    Google Scholar 

  • Schaefer HM, Valido A, Jordano P (2014) Birds see the true colours of fruits to live off the fat of the land. Proc R Soc Lond B Biol Sci 281(1777):20132516

    Article  Google Scholar 

  • Schroer S, Hölker F (2014). Light pollution reduction. In: Karlicek R, Sun C-C, Zissis G, Ma R (eds) Handbook of advanced lighting technology. Springer International Publishing, Switzerland, pp. 1–17

    Google Scholar 

  • Shimmura T, Yoshimura T (2013) Circadian clock determines the timing of rooster crowing. Curr Biol 23(6):231–233

    Article  Google Scholar 

  • Sinnadurai S (1981) High pressure sodium street lights affect crops in Ghana. World Crops 33:120–122

    Google Scholar 

  • Stack PA, Drummond FA (1997) Reproduction and development of Orius insidiosus in a blue light -supplemented short photoperiod. Biol Control 65(9):59–65

    Article  Google Scholar 

  • Stone EL, Harris S, Jones G (2015a) Impacts of artificial lighting on bats: a review of challenges and solutions. Mammalian Biology – Zeitschrift Für Säugetierkunde 80(3):213–219

    Article  Google Scholar 

  • Stone EL, Wakefield A, Harris S, Jones G (2015b) The impacts of new street light technologies : experimentally testing the effects on bats of changing from low- pressure sodium to white metal halide. Philos Trans R Soc Lond Ser B Biol Sci 370(1667):20140127

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306(5702):1783–1786

    Article  Google Scholar 

  • Stutte GW (2009) Light-emitting diodes for manipulating the phytochrome apparatus. Hortic Sci 44(2):231–234

    Google Scholar 

  • Tam CS, Lecoultre V, Ravussin E (2012) Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation 125(22):2782–2791

    Article  Google Scholar 

  • Tan D-X, Manchester LC, Fuentes-Broto L, Paredes SD, Reiter RJ (2011) Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obesity Rev Off J Int Assoc Study Obesity 12(3):167–188

    Article  Google Scholar 

  • Tani A, Shiina S, Nakashima K, Hayashi M (2014) Improvement in lettuce growth by light diffusion under solar panels. J Agricul Meteorol 70(3):139–149

    Article  Google Scholar 

  • Tsuboi H, Wada M (2011) Chloroplasts can move in any direction to avoid strong light. J Plant Res 124(1):201–210

    Article  Google Scholar 

  • Van Geffen KG, Van Grunsven RHA, Van Ruijven J, Van Berendse F, Veenendaal EM (2014) Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth. Ecol Evol 4(11):2082–2089

    Google Scholar 

  • Van Geffen KG, Van Eck E, De Boer RA, Van Grunsven RHA, Salis L et al (2015) Artificial light at night inhibits mating in a Geometrid moth. Insect Conser Diversity 8(3):282–287

    Article  Google Scholar 

  • Van Grunsven RHA, Donners M, Boekee K, Tichelaar I, Van Geffen KG et al (2014) Spectral composition of light sources and insect phototaxis, with an evaluation of existing spectral response models. J Insect Conser 18(2):225–231

    Article  Google Scholar 

  • Van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D (2011) Effect of spectral composition of artificial light on the attraction of moths. Biol Conserv 144(9):2274–2281

    Article  Google Scholar 

  • Vänninen I, Pinto DM, Nissinen AI, Johansen NS, Shipp L (2010) In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Ann Appl Biol 157(3):393–414

    Article  Google Scholar 

  • Veerman A (2001) Photoperiodic time measurement in insects and mites : a critical evaluation of the oscillator-clock hypothesis. J Insect Physiol 47(10):1097–1109

    Article  Google Scholar 

  • Veerman A, Veenendaal RL (2003) Experimental evidence for a non-clock role of the circadian system in spider mite photoperiodism. J Insect Physiol 49(8):727–732

    Article  Google Scholar 

  • Vera LM, Davie A, Taylor JF, Migaud H (2010) Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen Comp Endocrinol 165(1):25–33

    Article  Google Scholar 

  • Vollsnes AV, Eriksen AB, Otterholt E, Kvaal K, Oxaal U, Futsaether CM (2009) Visible foliar injury and infrared imaging show that daylength affects short-term recovery after ozone stress in Trifolium subterraneum. J Exp Bot 60(13):3677–3686

    Article  Google Scholar 

  • Vorobyev M (2003) Coloured oil droplets enhance colour discrimination. Proc R Soc B Biol Sci 270(1521):1255–1261

    Article  Google Scholar 

  • Vorobyev M (2004) Ecology and evolution of primate colour vision. Clin Exp Optom 87(4–5):230–238

    Article  Google Scholar 

  • Warrant E (2004) Vision in the dimmest habitats on earth. J Comp Physiol A 190(10):765–789

    Article  Google Scholar 

  • Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298

    Article  Google Scholar 

  • Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci U S A 103(33):12575–12579

    Article  Google Scholar 

  • Wiltschko R, Stapput K, Thalau P, Wiltschko W (2009) Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 7:163–177

    Google Scholar 

  • Winter Y, López J, Helversen O (2003) Ultraviolet vision in a bat. Nature 425(6958):612–614

    Article  Google Scholar 

  • Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D et al (2007) Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol 17(24):2122–2128

    Article  Google Scholar 

  • Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S (2009) The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci U S A 106(22):8980–8985

    Article  Google Scholar 

  • Zschokke S, Herberstein ME (2005) Laboratory methods for maintaining and studying web-building spiders. J Arachnol 33(2):205–213

    Article  Google Scholar 

Download references

Acknowledgment

We want to acknowledge the support by the European Cooperation in Science and Technology (COST) through the Action ES1204 LoNNe (Loss of the Night Network) and the national support by both the German Federal Ministry of Research and Technology (support code: 033L038A) and the Federal Agency for Nature Conservation (support code: 3514821700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Schroer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Schroer, S., Hölker, F. (2016). Impact of Lighting on Flora and Fauna. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00295-8_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00295-8_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-00295-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics