Skip to main content

Advertisement

Log in

The mobilization of autologous bone marrow stem cells in the treatment of heart failure with Chinese medicine

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a severe heart disease. The use of autologous bone marrow stem cells (BMCs) mobilization in the treatment of HF has been a hot topic to research both in Western medicine and Chinese medicine (CM). There are many clinical trials and experiments on study of BMCs mobilization for HF therapy, including integrative medicine. The effect of BMCs mobilization is favorable for cardiac repair, while some advantages of CM support the advanced study of its application in BMCs mobilization to treat HF. In addition, with mechanisms of autologous BMCs mobilization for the treatment of HF that will be revealed in the future, especially stem cells niches, integrative medicine would play an important role in this clinical thought of therapy model gradually. Simultaneously, CM should adapt the new approaches of stem cells progresses on HF treatment as holding characteristics of itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mudd JO, Kass DA. Tackling heart failure in the twenty-first century. Nature 2008;451:919–928.

    Article  PubMed  CAS  Google Scholar 

  2. Strauer BE, Schannwell CM, Brehm M. Therapeutic potentials of stem cells in cardiac diseases. Minerva Cardioangiol 2009;57:249–267.

    PubMed  CAS  Google Scholar 

  3. Davani S, Deschaseaux F, Chalmers D, Tiberghien P, Kantelip JP. Can stem cells mend a broken heart? Cardiovasc Res 2005;65:305–316.

    Article  PubMed  CAS  Google Scholar 

  4. Menown IA, Shand JA. Recent advances in cardiology. Future Cardiol 2010;6:11–17.

    Article  PubMed  Google Scholar 

  5. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 2008;29:1807–1818.

    Article  PubMed  CAS  Google Scholar 

  6. Chatterjee T, Ortak J, Akin I, Adolph E, Kleinfeldt T, Kische S, et al. Regenerative therapy in cardiology. Praxis (Bern 1994) 2009;98:321–329.

    Article  CAS  Google Scholar 

  7. Wei HM, Wong P, Hsu LF, Shim W. Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: current status and future directions. Singapore Med J 2009;50:935–942.

    PubMed  CAS  Google Scholar 

  8. Guhathakurta S, Subramanyan UR, Balasundari R, Das CK, Madhusankar N, Cherian KM. Stem cell experiments and initial clinical trial of cellular cardiomyoplasty. Asian Cardiovasc Thorac Ann 2009;17:581–586.

    PubMed  Google Scholar 

  9. Menasché P. Cell therapy: results in cardiology. Bull Acad Natl Med 2009;193:559–569.

    PubMed  Google Scholar 

  10. Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells 2004;22:487–500.

    Article  PubMed  Google Scholar 

  11. Akar AR, Durdu S, Cubukçuoğlu Deniz G, Aslan A, Akçali KC, Ozyurda U. Failing heart: remodel, replace or repair? Anadolu Kardiyol Derg 2008;8:148–157.

    PubMed  Google Scholar 

  12. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–2302.

    Article  PubMed  Google Scholar 

  13. Engelmann MG, Theiss HD, Hennig-Theiss C, Huber A, Wintersperger BJ, Werle-Ruedinger AE, et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSFSTEMI (granulocyte colony-stimulating factor ST-segment elevation myocardial infarction) trial. J Am Coll Cardiol 2006;48:1712–1721.

    Article  PubMed  CAS  Google Scholar 

  14. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007;167:989–997.

    Article  PubMed  Google Scholar 

  15. Zhang SN, Sun AJ, Ge JB, Yao K, Huang ZY, Wang KQ, et al. Systematic review on safety of intracoronary autologous bone marrow stem cells transfer in patients with acute myocardial infarction. Chin J Cardiol (Chin) 2008;36:679–684.

    Google Scholar 

  16. Zhang SN, Sun AJ, Ge JB, Yao K, Huang ZY, Wang KQ, et al. Effect of intracoronary autologous bone marrow stem cells transfer on left ventricular function after acute myocardial infarction. Chin J Intervent Cardiol 2008:16:317–22.

    Google Scholar 

  17. Yeo C, Mathur A. Autologous bone marrow-derived stem cells for ischemic heart failure: REGENERATE-IHD trial. Regen Med 2009;4:119–127.

    Article  PubMed  Google Scholar 

  18. Dib N, Taylor DA, Diethrich EB. Stem cell therapy and tissue engineering for cardiovascular repair: from basic research to clinical applications. Singapore: Springer; 2006:42–43.

  19. Moog R. Management strategies for poor peripheral blood stem cell mobilization. Transfus Apher Sci 2008;38:229–236.

    Article  PubMed  Google Scholar 

  20. Pelus LM, Bian H, King AG, Fukuda S. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4. Blood 2004;103:110–119.

    Article  PubMed  CAS  Google Scholar 

  21. Chwartz RS, Curfman GD. Can the heart repair itself? N Engl J Med 2002;346:2–5.

    Article  Google Scholar 

  22. Hu YH, Wu HQ, Qi X. Influence of Shenfu Injection on heart function and bone marrow stem cell mobilization in patients with chronic heart failure of coronary heart disease. Chin J Integr Tradit West Med (Chin) 2009;29:309–312.

    Google Scholar 

  23. Qu H, Guo SX, Feng M. Influence of granulocyte colony-stimulating factor to treat 45 cases congestive heart failure. Chin J Misdiagnosis 2005;5:476–477.

    Google Scholar 

  24. Yang QY, Zhao LC. Study on interfere in congestive heart failure after myocardial infarct by Yiqi Wenyang Huoxuefang. Doctorate Dissertation Guangzhou Univ Tradit Chin Med (Chin) 2006:2–48.

  25. Belenkov IuN, Ageev FT, Mareev VIu, Savchenko VG. Mobilization of bone marrow stem cells in the management of patients with heart failure: protocol and first results of ROT FRONT trial. Kardiologiia 2003;43:7–12.

    PubMed  Google Scholar 

  26. Bocchi EA, Bacal F, Guimarães G, Mendroni A, Mocelin A, Filho AE, et al. Granulocyte-colony stimulating factor or granulocyte-colony stimulating factor associated to stem cell intracoronary infusion effects in non ischemic refractory heart failure. Int J Cardiol 2010;138:94–97.

    Article  PubMed  Google Scholar 

  27. Hüttmann A, Dührsen U, Stypmann J, Noppeney R, Nückel H, Neumann T, et al. Granulocyte colony-stimulating factor-induced blood stem cell mobilisation in patients with chronic heart failure-feasibility, safety and effects on exercise tolerance and cardiac function. Basic Res Cardiol 2006;101:78–86.

    Article  PubMed  Google Scholar 

  28. Appelbaum FR. The use of bone marrow and peripheral blood stem cell transplantation in the treatment of cancer. CA Cancer J Clin 1996;46:1421–64.

    Article  Google Scholar 

  29. Xing ZL, Ryan MA, Daria D, Nattamai KJ, Zant GV, Wang L, et al. Increased hematopoietic stem cell mobilization in aged mice. Blood 2006;108:2190–2197.

    Article  PubMed  CAS  Google Scholar 

  30. Fazel SS, Chen L, Angoulvant D, Li SH, Weisel RD, Keating A, et al. Activation of c-kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury. FASEB 2008;22:930–940.

    Article  CAS  Google Scholar 

  31. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004;363:751–756.

    Article  PubMed  CAS  Google Scholar 

  32. Zhong ZY, Su H, Wang L. Effect of bone marrow stem cells mobilization of Danshen Drip in the therapy of injured heart. Chin J Cardiol (Chin) 2006;34:465.

    Google Scholar 

  33. Aliev G, Shenk JC, Fischbach K, Perry G. Stem cell niches as clinical targets: the future of anti-ischemic therapy? Nat Clin Pract Cardiovasc Med 2008;5:590–591.

    Article  PubMed  CAS  Google Scholar 

  34. Xiao GF, Zhang HQ, Huang XY, Huang WJ, Xu LX. Effects of two ingredients of danshenon number and activity of endothelial progenitor cell in vitro. Chin Archi Tradit Chin Med (Chin) 2006;24:1035.

    Google Scholar 

  35. Chen XF, Tang LJ, Zhu M, Gu ZL, Jiang JJ, Du YX. Effects of tanshinone II A on proliferation, migration and adhesion of endothelial progenitor cells from peripheral blood. Chin Pharmacol Bull (Chin) 2007;23:274.

    CAS  Google Scholar 

  36. Ji KT, Zhang HQ, Yang PL, Li HY, Yang DY, Huang XY. Effects of Compound Salvia Injection on number and activity of endothelial progenitor cells. Chin J Chin Mater Med (Chin) 2006;31:246.

    Google Scholar 

  37. Zhang FR, Chen JZ, Zhu JH, Wang XX, Zhu JH, Shang YP, et al. Effects of puerarin on number and activity of endothelial progenitor cells from peripheral blood. Chin J Chin Mater Med (Chin) 2004;29:777.

    CAS  Google Scholar 

  38. Wang XX, Shang YP, Chen JZ, Zhu JH, Guo XG, Sun J. Effects of Ginkgo biloba extract on number and activity of endothelial progenitor cells from peripheral blood. Acta Pharmacol Sin 2004;39:656.

    CAS  Google Scholar 

  39. Liang XW, Liang C, Wu ZG. Effect of TXL and statin on the number and function of peripheral endothelial progenitor cells. Inter J Cardio Dis (Chin) 2007;6:56.

    CAS  Google Scholar 

  40. Gu J, Wang CQ, Fan HH, Nie XX, Wang BY, Wang DW. Effects of resveratrol on function of endothelial progenitor cells from peripheral blood. Chin Heart J (Chin) 2006;18:617.

    CAS  Google Scholar 

  41. Ji KT, Zhang HQ, Tang JF, Li HY. Effects of danshen on number and activity of endothelial progenitor cells of patients with hypercholesterolemia. Chin J Chin Mater Med (Chin) 2007:32:1214.

    Google Scholar 

  42. Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004;103:1580–1585.

    Article  PubMed  CAS  Google Scholar 

  43. Papayannopoulou T, Scadden DT. Stem-cell ecology and stem cells in motion. Blood 2008;111:3923–3930.

    Article  PubMed  CAS  Google Scholar 

  44. Voog J, Jones DL. Stem cells and the niches: a dynamic duo. Cell Stem Cell 2010;6:103–115.

    Article  PubMed  CAS  Google Scholar 

  45. Scadden DT. The stem-cell niche as an entity of action. Nature 2006;441:1075–1079.

    Article  PubMed  CAS  Google Scholar 

  46. Napoli C, William-Ignarro S, Byrns R, Balestrieri ML, Crimi E, Farzati B, et al. Therapeutic targeting of the stem cell niche in experimental hindlimb ischemia. Nat Clin Pract Cardiovasc Med 2008;5:571–579.

    Article  PubMed  CAS  Google Scholar 

  47. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005;106:3020–3027.

    Article  PubMed  CAS  Google Scholar 

  48. Laterveer L, Zijlmans JM, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE. Improved survival of lethally irradiated recipient mice transplanted with circulating progenitor cells mobilized by IL-8 after pretreatment with stem cell factor. Exp Hematol 1996;24:1387–1393.

    PubMed  CAS  Google Scholar 

  49. Pruijt JF, Verzaal P, van Os R, de Kruijf EJ, van Schie ML, Mantovani A, et al. Neutrophils are indispensable for hematopoietic stem cell mobilization by interleukin-8 in mice. Proc Natl Acad Sci USA 2002;99:6228–6233.

    Article  PubMed  CAS  Google Scholar 

  50. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ, et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2001;97:1534–1542.

    Article  PubMed  CAS  Google Scholar 

  51. Geissler K, Peschel C, Niederwieser D, Goldschmitt J, Hladik F, Fritz A, et al. Effect of interleukin-3 pretreatment on granulocyte macrophage colony-stimulating factor induced mobilization of circulating haemopoietic progenitor cells. Br J Haematol 1995;91:299–305.

    Article  PubMed  CAS  Google Scholar 

  52. Postiglione L, Montagnani S, Ladogana P, Castaldo C, Di Spigna G, Bruno EM, et al. Granulocyte Macrophage-Colony Stimulating Factor receptor expression on human cardiomyocytes from end-stage heart failure patients. Eur J Heart Fail 2006;8:564–570.

    Article  PubMed  CAS  Google Scholar 

  53. Nand S, Sosman J, Godwin JE, Fisher RI. A phase I/II study of sequential interleukin-3 and granulocytemacrophage colony-stimulating factor in myelodysplastic syndromes. Blood 1994;83:357–360.

    PubMed  CAS  Google Scholar 

  54. Iwata M, Pillai M, Ramakrishnan A, Hackman RC, Joachim Deeg H, Opdenakker G, et al. Reduced expression of inducible gelatinase B/matrix metalloproteinase-9 in monocytes from patients with myelodysplastic syndrome: Correlation of inducible levels with the percentage of cytogenetically marked cells and with marrow cellularity. Blood 2007;109:85–92.

    Article  PubMed  CAS  Google Scholar 

  55. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T. Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 2002;99:44–51.

    Article  PubMed  CAS  Google Scholar 

  56. Podar k, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2005;105:1383–1395.

    Article  PubMed  CAS  Google Scholar 

  57. Hattori K, Heissig B, Rafii S. The regulation of hematopoietic stem cell progenitor mobilization by chemokines SDF-1. Leuk Lymphoma 2003;44:575–582.

    Article  PubMed  CAS  Google Scholar 

  58. Nakayama BN, Fang I, Elliott G. Natural killer and B-lymphoid potential in CD34+ cells derived from embryonic stem cells differentiated in the presence of vascular endothelial growth factor. Blood 1998;91:2283–2295.

    PubMed  CAS  Google Scholar 

  59. Molineux G, McCrea C, Yan XQ, Kerzic P, McNiece I. Flt-3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential. Blood 1997;89:3998–4004.

    PubMed  CAS  Google Scholar 

  60. Hudak S, Hunte B, Culpepper J, Menon S, Hannum C, Thompson-Snipes L, et al. FLT3/FLK2 ligand promotes the growth of murine stem cells and the expansion of colonyforming cells and spleen colony-forming units. Blood 1995;85:2747–2755.

    PubMed  CAS  Google Scholar 

  61. National Institutes of Health. National Institutes of Health guidelines on human stem cell research. National Institutes of Health, U.S. Department of Health and Human Services, 2009: http://stemcells.nih.gov/policy/2009guidelines.

  62. Mckay RD, Kooy D, Zwaka TP, Lin HF. Stem cells in 2009. Cell Stem Cell 2009;5:483–489.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-deng Zhang  (张良登).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Kw., Zhang, Ld. & Wang, J. The mobilization of autologous bone marrow stem cells in the treatment of heart failure with Chinese medicine. Chin. J. Integr. Med. 17, 873–880 (2011). https://doi.org/10.1007/s11655-011-0796-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-011-0796-x

Keywords

Navigation