Skip to main content

Isolation and Purification of Self-Renewable Human Neural Stem Cells for Cell Therapy in Experimental Model of Ischemic Stroke

  • Protocol
  • First Online:
Book cover Neural Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1059))

Abstract

Human embryonic stem cells (hESCs) are pluripotent with a strong self-renewable ability making them a virtually unlimited source of neural cells for structural repair in neurological disorders. Currently, hESCs are one of the most promising cell sources amenable for commercialization of off-shelf cell therapy products. However, along with this strong proliferative capacity of hESCs comes the tumorigenic potential of these cells after transplantation. Thus, the isolation and purification of a homogeneous, population of neural stem cells (hNSCs) are of paramount importance to avoid tumor formation in the host brain. This chapter describes the isolation, neuralization, and long-term perpetuation of hNSCs derived from hESCs through use of specific mitogenic growth factors and the preparation of hNSCs for transplantation in an experimental model of stroke. Additionally, we describe methods to analyze the stroke and size of grafts using magnetic resonance imaging and Osirix software, and neuroanatomical tracing procedures to study axonal remodeling after stroke and cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL et al (2012) Executive summary: heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125:188

    Article  PubMed  Google Scholar 

  2. Minino AM et al (2011) Deaths: final data for 2008. Natl Vital Stat Rep 59:1

    PubMed  Google Scholar 

  3. Arvidsson A et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963

    Article  PubMed  CAS  Google Scholar 

  4. Parent JM et al (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802

    Article  PubMed  Google Scholar 

  5. Zhang RL et al (2001) Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105:33

    Article  PubMed  CAS  Google Scholar 

  6. Zhang R et al (2004) Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J Neurosci 24:5810

    Article  PubMed  CAS  Google Scholar 

  7. Jin K et al (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710

    Article  PubMed  CAS  Google Scholar 

  8. Jin K et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171

    Article  PubMed  CAS  Google Scholar 

  9. Zhang R et al (2004) Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab 24:441

    Article  PubMed  Google Scholar 

  10. STEPS (2009) Stem cell therapies as an emerging paradigm in stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 40:510

    Article  Google Scholar 

  11. Borlongan CV et al (1997) Neural transplantation as an experimental treatment modality for cerebral ischemia. Neurosci Biobehav Rev 21:79

    Article  PubMed  CAS  Google Scholar 

  12. Lindvall O, Kokaia Z (2011) Stem cell research in stroke: how far from the clinic? Stroke 42(8):2369–2375

    Article  PubMed  Google Scholar 

  13. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145

    Article  PubMed  CAS  Google Scholar 

  14. Daadi MM (2011) Novel paths towards neural cellular products for neurological disorders. Regen Med 6:25

    Article  PubMed  CAS  Google Scholar 

  15. Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3:e1644

    Article  PubMed  Google Scholar 

  16. Elkabetz Y et al (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152

    Article  PubMed  CAS  Google Scholar 

  17. Koch P et al (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 106:3225

    Article  PubMed  CAS  Google Scholar 

  18. Bain G et al (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342

    Article  PubMed  CAS  Google Scholar 

  19. Okabe S et al (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89

    Article  PubMed  CAS  Google Scholar 

  20. Carpenter MK et al (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383

    Article  PubMed  CAS  Google Scholar 

  21. Ying QL et al (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183

    Article  PubMed  CAS  Google Scholar 

  22. Zhang SC et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129

    Article  PubMed  CAS  Google Scholar 

  23. Schulz TC et al (2003) Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci 4:27

    Article  PubMed  Google Scholar 

  24. Cho MS et al (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 105:3392

    Article  PubMed  CAS  Google Scholar 

  25. Perrier AL et al (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543

    Article  PubMed  CAS  Google Scholar 

  26. Tabar V et al (2005) Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23:601

    Article  PubMed  CAS  Google Scholar 

  27. Pera MF et al (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269

    Article  PubMed  CAS  Google Scholar 

  28. Itsykson P et al (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci 30:24

    Article  PubMed  CAS  Google Scholar 

  29. Reubinoff BE et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134

    Article  PubMed  CAS  Google Scholar 

  30. Gerrard L, Rodgers L, Cui W (2005) Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells 23:1234

    Article  PubMed  CAS  Google Scholar 

  31. Nat R et al (2007) Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. Glia 55:385

    Article  PubMed  Google Scholar 

  32. Shin S et al (2006) Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions. Stem Cells 24:125

    Article  PubMed  Google Scholar 

  33. Longa EZ et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84

    Article  PubMed  CAS  Google Scholar 

  34. Frank JA et al (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9(Suppl 2):S484

    Article  PubMed  Google Scholar 

  35. Daadi MM et al (2009) Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 17:1282

    Article  PubMed  CAS  Google Scholar 

  36. Daadi MM et al (2009) Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant 18:815

    Article  PubMed  Google Scholar 

  37. Castaneda RT et al (2011) Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp 57:e3482

    PubMed  Google Scholar 

Download references

Acknowledgments

Dr Azevedo-Pereira is supported by Coordenação de Aperfeiç-oamento de Pessoal de Nível Superior (CAPES, Brazil).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Azevedo-Pereira, R.L., Daadi, M.M. (2013). Isolation and Purification of Self-Renewable Human Neural Stem Cells for Cell Therapy in Experimental Model of Ischemic Stroke. In: Reynolds, B., Deleyrolle, L. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 1059. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-574-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-574-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-573-6

  • Online ISBN: 978-1-62703-574-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics