Skip to main content

Modeling Genomic Imprinting Disorders Using Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Book cover Patient-Specific Induced Pluripotent Stem Cell Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1353))

Abstract

Induced pluripotent stem cell (iPSC) technology has allowed for the invaluable modeling of many genetic disorders including disorders associated with genomic imprinting. Genomic imprinting involves differential DNA and histone methylation and results in allele-specific gene expression. Most of the epigenetic marks in somatic cells are erased and reestablished during the process of reprogramming into iPSCs. Therefore, in generating models of disorders associated with genomic imprinting, it is important to verify that the imprinting status and allele-specific gene expression patterns of the parental somatic cells are maintained in their derivative iPSCs. Here, we describe three techniques: DNA methylation analysis, allele-specific PCR, and RNA FISH, which we use to analyze genomic imprinting in iPSC models of neurogenetic disorders involving copy number variations of the chromosome 15q11–q13 region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henckel A, Arnaud P (2010) Genome-wide identification of new imprinted genes. Brief Funct Genomics 9(4):304–314

    Article  CAS  PubMed  Google Scholar 

  2. Gregg C et al (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329(5992):643–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kelsey G, Bartolomei MS (2012) Imprinted genes … and the number is? PLoS Genet 8(3):e1002601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Singh P et al (2011) Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol Cell Biol 31(8):1757–1770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chamberlain SJ, Lalande M (2010) Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13. Neurobiol Dis 39(1):13–20

    Article  CAS  PubMed  Google Scholar 

  6. Jacob KJ, Robinson WP, Lefebvre L (2013) Beckwith-Wiedemann and Silver-Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth. Clin Genet 84(4):326–334

    Article  CAS  PubMed  Google Scholar 

  7. Nakabayashi K et al (2002) Identification and characterization of an imprinted antisense RNA (MESTIT1) in the human MEST locus on chromosome 7q32. Hum Mol Genet 11(15):1743–1756

    Article  CAS  PubMed  Google Scholar 

  8. Davies SJ, Hughes HE (1993) Imprinting in Albright hereditary osteodystrophy. J Med Genet 30(2):101–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chamberlain SJ, Li XJ, Lalande M (2008) Induced pluripotent stem (iPS) cells as in vitro models of human neurogenetic disorders. Neurogenetics 9(4):227–235

    Article  PubMed  Google Scholar 

  10. Chamberlain SJ et al (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A 107(41):17668–17673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Germain ND, Chen P-F, Plocik AM, Glatt-Deeley H, Brown J, Fink JJ, Bolduc KA, Robinson TM, Levine ES, Reiter LT, Graveley BR, Lalande M, Chamberlain SJ (2014) Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol Autism 5:44

    Article  PubMed Central  PubMed  Google Scholar 

  12. Martins-Taylor K et al (2014) Imprinted expression of UBE3A in non-neuronal cells from a Prader-Willi syndrome patient with an atypical deletion. Hum Mol Genet 23(9):2364–2373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yamada Y et al (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 14(2):247–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bruce S, Hannula-Jouppi K, Lindgren CM, Lipsanen-Nyman M, Kere J (2008) Restriction site-specific methylation studies of imprinted genes with quantitative real-time PCR. Clin Chem 54(3):491–499

    Article  CAS  PubMed  Google Scholar 

  15. Oakes CC, La Salle S, Robaire B, Trasler JM (2006) Evaluation of a quantitative DNA methylation analysis technique using methylation-sensitive/dependent restriction enzymes and real-time PCR. Epigenetics 1(3):146–152

    Article  PubMed  Google Scholar 

  16. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  17. Shirk RY, Glenn TC, Chang S-M, Hamrick J (2013) Development and characterization of microsatellite primers in Geranium carolinianum (Geraniaceae) with 454 sequencing. Appl Plant Sci 1(8)

    Google Scholar 

  18. Untergasser A et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    Article  CAS  PubMed  Google Scholar 

  20. Kishino T, Wagstaff J (1998) Genomic organization of the UBE3A/E6-AP gene and related pseudogenes. Genomics 47(1):101–107

    Article  CAS  PubMed  Google Scholar 

  21. Ferrandiz C, Sessions A (2008) Preparation and hydrolysis of digoxigenin-labeled probes for in situ hybridization of plant tissues. CSH Protoc 2008:pdb prot4942

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stormy J. Chamberlain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chamberlain, S.J., Germain, N.D., Chen, PF., Hsiao, J.S., Glatt-Deeley, H. (2014). Modeling Genomic Imprinting Disorders Using Induced Pluripotent Stem Cells. In: Nagy, A., Turksen, K. (eds) Patient-Specific Induced Pluripotent Stem Cell Models. Methods in Molecular Biology, vol 1353. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_169

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_169

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3033-3

  • Online ISBN: 978-1-4939-3034-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics