Skip to main content

Advertisement

Log in

The use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agra AR, Soares AM (2009) Effects of two insecticides on survival, growth and emergence of Chironomus riparius Meigen. Bull Environ Contam Toxicol 82(4):501–504

    CAS  Google Scholar 

  • Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38(23):6353–6362

    CAS  Google Scholar 

  • Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24(4):966–972

    CAS  Google Scholar 

  • Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40(5):1700–1706

    CAS  Google Scholar 

  • Anderson BS, Phillips BM, Hunt JW, Worcester K, Adams M, Kapellas N, Tjeerdema RS (2006) Evidence of pesticide impacts in the Santa Maria River watershed, California, USA. Environ Toxicol Chem 25(4):1160–1170

    CAS  Google Scholar 

  • Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 110(2):149–155

    Google Scholar 

  • Ankley GT, Benoit DA, Hoke RA, Leonard EN, West CW, Phipps GL, Mattson VR, Anderson LA (1993) Development and evaluation of test methods for benthic invertebrates and sediments: effects of flow rate and feeding on water quality and exposure conditions. Arch Environ Contam Toxicol 25(1):12–19

    CAS  Google Scholar 

  • Ankley GT, Call DJ, Cox JS, Kahl MD, Hoke RA, Kosian PA (1994) Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ Toxicol Chem 13(4):621–626

    CAS  Google Scholar 

  • Azevedo-Pereira HMVS, Lemos MFL, Soares AMVM (2011) Effects of imidacloprid exposure on Chironomus riparius Meigen larvae: linking acetylcholinesterase activity to behaviour. Ecotoxicol Environ Saf 74(5):1210–1215

    CAS  Google Scholar 

  • Backhaus T, Scholze M, Grimme LH (2000) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49(1–2):49–61

    CAS  Google Scholar 

  • Backhaus T, Arrhenius Å, Blanck H (2004) Toxicity of a mixture of dissimilarly acting substances to natural algal communities: predictive power and limitations of independent action and concentration addition. Environ Sci Technol 38(23):6363–6370

    CAS  Google Scholar 

  • Backhaus T, Faust M, Kortenkamp A (2013) Cumulative risk assessment: a European perspective on the state of the art and the necessary next steps forward. Integr Environ Assess Manag 9(4):547–548

    Google Scholar 

  • Barata C, Baird DJ, Nogueira AJ, Soares AM, Riva MC (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol 78(1):1–14

    CAS  Google Scholar 

  • Barata C, Fernandez-San Juan M, Luisa Feo M, Eljarrrat E, Soares AMVM, Barcelo D, Baird DJ (2012) Population growth rate responses of Ceriodaphnia dubia to ternary mixtures of specific acting chemicals: pharmacological versus ecotoxicological modes of action. Environ Sci Technol 46:9663–9672

    CAS  Google Scholar 

  • Beggel S, Werner I, Connon RE, Geist JP (2010) Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Sci Total Environ 408(16):3169–3175

    CAS  Google Scholar 

  • Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci 110(27):11039–11043

    CAS  Google Scholar 

  • Belden JB, Lydy MJ (2006) Joint toxicity of chlorpyrifos and esfenvalerate to fathead minnows and midge larvae. Environ Toxicol Chem 25(2):623–629

    CAS  Google Scholar 

  • Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integ Environ Assess Manag 3(3):364–372

    CAS  Google Scholar 

  • Bereswill R, Streloke M, Schulz R (2013) Current-use pesticides in stream water and suspended particles following runoff: exposure, effects, and mitigation requirements. Environ Toxicol Chem 32(6):1254–1263

    CAS  Google Scholar 

  • Bliss CI (1939) The toxicity of poisons applied jointly1. Ann Appl Biol 26(3):585–615

    CAS  Google Scholar 

  • Brodeur JC, Poliserpi MB, D’Andrea MF, Sanchez M (2014) Synergy between glyphosate- and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American Toad Rhinella arenarum. Chemosphere 112:70–76

    CAS  Google Scholar 

  • Brooks ML, Fleishman E, Brown LR, Lehman PW, Werner I, Scholz N, Mitchelmore C, Lovvorn JR, Johnson ML, Schlenk D, van Drunick S, Drever JI, Stoms DM, Parker AE, Dugdale R (2012) Life histories, salinity zones, and sublethal contributions of contaminants to pelagic fish declines illustrated with a case study of San Francisco Estuary, California, USA. Estuar Coasts 35(2):603–621

    Google Scholar 

  • Budd R, O´Geen A, Goh KS, Bondarenko S, Gan J (2009) Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California. Environ Sci Technol 43(8):2925–2930

    CAS  Google Scholar 

  • Burton GA, Norberg-King TJ, Benoit DA, Ankley GT, Winger PV, Kubitz J, Lazorchak JM, Smith ME, Call DJ, Ingersoll CG, Greer E, Dwyer FJ, Day KE, Kennedy P, Stinson M (1996) Interlaboratory study of precision: Hyalella azteca and Chironomus tentans freshwater sediment toxicity assays. Environ Toxicol Chem 15(8):1335–1343

    CAS  Google Scholar 

  • Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9(5):e96580

    Google Scholar 

  • Chen C, Wang Y, Zhao X, Wang Q, Qian Y (2014) The combined toxicity assessment of carp (Cyprinus carpio) acetylcholinesterase activity by binary mixtures of chlorpyrifos and four other insecticides. Ecotoxicology 23(2):221–228

    CAS  Google Scholar 

  • Christensen BT, Lauridsen TL, Ravn HW, Bayley M (2005) A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to cypermethrin. Aquat Toxicol 73(2):210–220

    CAS  Google Scholar 

  • Clark JM, Matsumura F (1982) Two different types of inhibitory effects of pyrethroids on nerve Ca- and Ca + Mg-ATPase activity in the Squid, Loligo pealei. Pestic Biochem Physiol 18(2):180–190

    CAS  Google Scholar 

  • Connon RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12(9):12741–12771

    CAS  Google Scholar 

  • de Zwart D, Posthuma L (2005) Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem 24(10):2665–2676

    Google Scholar 

  • Deanovic LA, Markiewicz D, Stillway M, Fong S, Werner I (2013) Comparing the effectiveness of chronic water column tests with the crustaceans Hyalella azteca (order: Amphipoda) and Ceriodaphnia dubia (order: Cladocera) in detecting toxicity of current-use insecticides. Environ Toxicol Chem 32(3):707–712

    CAS  Google Scholar 

  • Denton DL, Wheelock CE, Murray SA, Deanovic LA, Hammock BD, Hinton DE (2003) Joint acute toxicity of esfenvalerate and diazonin to larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 22(2):336–341

    CAS  Google Scholar 

  • Du J, Pang J, You J (2013) Bioavailability-based chronic toxicity measurements of permethrin to Chironomus dilutus. Environ Toxicol Chem 32(6):1403–1411

    CAS  Google Scholar 

  • EC EC (2003) Technical guidance document in support of Commission Directive 93/67 EEC on risk assessment for new notified substances, Commission Regulation (EC) no. 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. European Chemical Bureau, Ispra, Italy

  • Eide I, Johansson E (1994) Statistical experimental design and projections to latent structures analysis in the evaluation of fuel blends with respect to particulate emissions. Chemometr Intell Lab Syst 22(1):77–85

    CAS  Google Scholar 

  • Farmer D, Hill IR, Maund SJ (1995) A comparison of the fate and effects of two pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) in pond mesocosms. Ecotoxicology 4(4):219–244

    CAS  Google Scholar 

  • Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63:43–63

  • Faust M, Altenburger R, Backhaus T, Bödeker W, Scholze M, Grimme LH (2000) Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J Environ Qual 29(4):1063–1068

    CAS  Google Scholar 

  • Floyd EY, Geist JP, Werner I (2008) Acute, sublethal exposure to a pyrethroid insecticide alters behavior, growth, and predation risk in larvae of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 27(8):1780–1787

    CAS  Google Scholar 

  • Geist J (2011) Integrative freshwater ecology and biodiversity conservation. Ecol Ind 11(6):1507–1516

    Google Scholar 

  • Geist J, Werner I, Eder KJ, Leutenegger CM (2007) Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate. Aquat Toxicol 85(1):28–39

    CAS  Google Scholar 

  • Gregorio V, Chevre N, Junghans M (2013) Critical issues in using the common mixture toxicity models concentration addition or response addition on species sensitivity distributions: a theoretical approach. Environ Toxicol Chem 32(10):2387–2395

    CAS  Google Scholar 

  • Hanson N, Stark JD (2012) Utility of population models to reduce uncertainty and increase value relevance in ecological risk assessments of pesticides: an example based on acute mortality data for daphnids. Integr Environ Assess Manag 8(2):262–270

    CAS  Google Scholar 

  • Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem 28(5):1051–1058

    CAS  Google Scholar 

  • Hatch AC, Burton GA (1999) Sediment toxicity and stormwater runoff in a contaminated receiving system: consideration of different bioassays in the laboratory and field. Chemosphere 39(6):1001–1017

    CAS  Google Scholar 

  • Heath AG, Cech JJ, Zinkl JG, Steele MD (1993) Sublethal effects of three pesticides on Japanese medaka. Arch Environ Contam Toxicol 25(4):485–491

    CAS  Google Scholar 

  • Heindel JJ, Chapin RE, George J, Gulati DK, Fail PA, Barnes LH, Yang RSH (1995) Assessment of the reproductive toxicity of a complex mixture of 25 groundwater contaminants in mice and rats. Fundam Appl Toxicol 25:9–19

  • Hermens J, Canton H, Steyger N, Wegman R (1984) Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna. Aquat Toxicol 5(4):315–322

    CAS  Google Scholar 

  • Hewlett PS, Plackett RL (1952) Similar Joint Action of Insecticides. Nature 169(4292):198–199

    CAS  Google Scholar 

  • Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Pollut 157(1):110–116

    CAS  Google Scholar 

  • Hooper HL, Sibly RM, Maund SJ, Hutchinson TH (2003) The joint effects of larval density and 14C-cypermethrin on the life history and population growth rate of the midge Chironomus riparius. J Appl Ecol 40(6):1049–1059

    CAS  Google Scholar 

  • Hua J, Cothran R, Stoler A, Relyea R (2013) Cross-tolerance in amphibians: wood frog mortality when exposed to three insecticides with a common mode of action. Environ Toxicol Chem 32(4):932–936

    CAS  Google Scholar 

  • Jager T, Heugens E, Kooijman S (2006) Making sense of ecotoxicological test results: towards application of process-based models. Ecotoxicology 15(3):305–314

    CAS  Google Scholar 

  • Jeon J, Kurth D, Ashauer R, Hollender J (2013) Comparative toxicokinetics of organic micropollutants in freshwater crustaceans. Environ Sci Technol 47(15):8809–8817

    CAS  Google Scholar 

  • Jin M, Zhang X, Wang L, Huang C, Zhang Y, Zhao M (2009) Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish. Aquat Toxicol 95(4):347–354

    CAS  Google Scholar 

  • Johnson KR, Jepson PC, Jenkins JJ (2008) Esfenvalerate-induced case-abandonment in the larvae of the caddisfly (Brachycentrus americanus). Environ Toxicol Chem 27(2):397–403

    CAS  Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ Toxicol Chem 24(10):2701–2713

    CAS  Google Scholar 

  • Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2006) Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquat Toxicol 76(2):93–110

    CAS  Google Scholar 

  • Könemann H (1981) Fish toxicity tests with mixtures of more than two chemicals: a proposal for a quantitative approach and experimental results. Toxicology 19(3):229–238

    Google Scholar 

  • Kooijman SALM, Metz JAJ (1984) On the dynamics of chemically stressed populations: the deduction of population consequences from effects on individuals. Ecotoxicol Environ Saf 8(3):254–274

    CAS  Google Scholar 

  • Landrum PF, Gedeon ML, Burton GA, Greenberg MS, Rowland CD (2002) Biological Responses of Lumbriculus variegatus Exposed to Fluoranthene-Spiked Sediment. Arch Environ Contam Toxicol 42(3):292–302

    CAS  Google Scholar 

  • Larras F, Lambert A-S, Pesce S, Rimet F, Bouchez A, Montuelle B (2013) The effect of temperature and a herbicide periphytic algae mixture on freshwater. Ecotoxicol Environ Saf 98:162–170

    CAS  Google Scholar 

  • Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170

    CAS  Google Scholar 

  • Li H, Sun B, Lydy MJ, You J (2013) Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns. Environ Toxicol Chem 32(5):1040–1047

    CAS  Google Scholar 

  • Liber K, Call DJ, Dawson TD, Whiteman FW, Dillon TM (1996) Effects of Chironomus tentans larval growth retardation on adult emergence and ovipositing success: implications for interpreting freshwater sediment bioassays. Hydrobiologia 323(3):155–167

    Google Scholar 

  • Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9(1):13–19

    CAS  Google Scholar 

  • Liu W, Gan JJ, Lee S, Kabashima JN (2004) Phase distribution of synthetic pyrethroids in runoff and stream water. Environ Toxicol Chem 23(1):7–11

    Google Scholar 

  • Lydy MJ, Austin KR (2004) Toxicity assessment of pesticide mixtures typical of the Sacramento-San Joaquin Delta Using Chironomus tentans. Arch Environ Contam Toxicol 48(1):49–55

    Google Scholar 

  • Lydy M, Belden J, Wheelock C, Hammock B, Denton D (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9(6):1

  • Malison RL, Benjamin JR, Baxter CV (2010) Measuring adult insect emergence from streams: the influence of trap placement and a comparison with benthic sampling. J N Am Benthol Soc 29(2):647–656

    Google Scholar 

  • Martinez-Jeronimo F, Espinosa-Chavez F, Villasenor R (2000) Effect of culture volume and adult density on the neonate production of Daphnia magna, as a test organism for aquatic toxicity tests. Environ Toxicol 15(3):155–159

    CAS  Google Scholar 

  • Maul JD, Brennan AA, Harwood AD, Lydy MJ (2008) Effect of sediment-associated pyrethroids, fipronil, and metabolites on Chironomus tentans growth rate, body mass, condition index, immobilization, and survival. Environ Toxicol Chem 27(12):2582–2590

    CAS  Google Scholar 

  • McCarty LS, Dixon DG, Ozburn GW, Smith AD (1992) Toxicokinetic modeling of mixtures of organic chemicals. Environ Toxicol Chem 11(7):1037–1047

    CAS  Google Scholar 

  • McKenney JCL, Weber DE, Celestial DM, MacGregor MA (1998) Altered growth and metabolism of an estuarine shrimp (Palaemonetes pugio) during and after metamorphosis onto fenvalerate-laden sediment. Arch Environ Contam Toxicol 35(3):464–471

    CAS  Google Scholar 

  • Nahon S, Charles F, Lantoine F, Vétion G, Escoubeyrou K, Desmalades M, Pruski AM (2010) Ultraviolet radiation negatively affects growth and food quality of the pelagic diatom skeletonema costatum J Exp Mar Bio Ecol 383:164–170

  • Nasuti C, Cantalamesa F, Falcioni G, Gabbianelli R (2003) Different effects of Type I and Type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 191(2–3):233–244

    CAS  Google Scholar 

  • Nørgaard K, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res 17(4):957–967

    Google Scholar 

  • Norwood WP, Borgmann U, Dixon DG (2013) An effects addition model based on bioaccumulation of metals from exposure to mixtures of metals can predict chronic mortality in the aquatic invertebrate hyalella azteca. Environ Toxicol Chem 32(7):1672–1681

    CAS  Google Scholar 

  • Nyman A-M, Hintermeister A, Schirmer K, Ashauer R (2013) The insecticide imidacloprid causes mortality of the freshwater amphipod gammarus pulex by interfering with feeding behavior. PLoS ONE 8(5):e62472

    CAS  Google Scholar 

  • Olmstead AW, LeBlanc GA (2005) Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model. Integr Environ Assess Manag 1:114–122

  • Oros DR, Werner I (2005) Pyrethroid insecticides an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley. SFEI contribution 415. Oakland, California, San Francisco Estuary Institute, 112

  • Pape-Lindstrom PA, Lydy MJ (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16(11):2415–2420

    CAS  Google Scholar 

  • Phillips BM, Anderson BS, Hunt JW, Siegler K, Voorhees JP, Tjeerdema RS, McNeill K (2012) Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA). Environ Toxicol Chem, n/a–n/a

  • Rakotondravelo M, Anderson T, Charlton R, Zhu K (2006) Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch Environ Contam Toxicol 51(3):352–359

    CAS  Google Scholar 

  • Rasmussen JJ, Wiberg-Larsen P, Kristensen EA, Cedergreen N, Friberg N (2013) Pyrethroid effects on freshwater invertebrates: a meta-analysis of pulse exposures. Environ Pollut 182:479–485

    CAS  Google Scholar 

  • Rebechi D, Richardi VS, Vicentini M, Guiloski IC, Assis HCSd, Navarro-Silva MA (2014) Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Rev Bras de Entomol 58:296–301

    Google Scholar 

  • Ristola T, Pellinen J, Ruokolainen M, Kostamo A, Kukkonen JVK (1999) Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomus riparius). Environ Toxicol Chem 18(4):756–764

    CAS  Google Scholar 

  • Ritz C, Streibig J (2005) Bioassay analysis using R. J Stat Softw 12(5):1–22

    Google Scholar 

  • Scherer C, Seeland A, Oehlmann J, Mueller R (2013) Interactive effects of xenobiotic, abiotic and biotic stressors on Daphnia pulex-results from a multiple stressor experiment with a fractional multifactorial design. Aqua Toxicol (Amsterdam) 138:105–115

    Google Scholar 

  • Scholz NL, Fleishman E, Brown L, Werner I, Johnson ML, Brooks ML, Mitchelmore CL, Schlenk D (2012) A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. BioScience 62(4):428–434

    Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution. J Environ Qual 33(2):419–448

    CAS  Google Scholar 

  • Sibley PK, Ankley GT, Cotter AM, Leonard EN (1996) Predicting chronic toxicity of sediments spiked with zinc: an evaluation of the acid-volatile sulfide model using a life-cycle test with the midge Chironomus tentans. Environ Toxicol Chem 15(12):2102–2112

    CAS  Google Scholar 

  • Sibley PK, Benoit DA, Ankley GT (1997) The significance of growth in Chironomus tentans sediment toxicity tests: relationship to reproduction and demographic endpoints. Environ Toxicol Chem 16(2):336–345

    CAS  Google Scholar 

  • Smith S Jr, Lizotte RE Jr (2007) Influence of selected water quality characteristics on the toxicity of lambda-cyhalothrin and gamma-cyhalothrin to Hyalella azteca. Bull Environ Contam Toxicol 79(5):548–551

    CAS  Google Scholar 

  • Sørensen H, Cedergreen N, Skovgaard I, Streibig J (2007) An isobole-based statistical model and test for synergism/antagonism in binary mixture toxicity experiments. Environ Ecol Stat 14(4):383–397

    Google Scholar 

  • Sprague LA, Nowell LH (2008) Comparison of pesticide concentrations in streams at low flow in six metropolitan areas of the United States. Environ Toxicol Chem 27(2):288–298

    CAS  Google Scholar 

  • Stevens DJ, Hansell MH, Monaghan P (1999) Developmental trade-offs in caddisflies: increased investment in larval defence alters adult resource allocation. Proc R Soc B: Biol Sci 266:1049–1054

    Google Scholar 

  • Symington SB, Hodgdon HE, Frisbie RK, Clark JM (2011) Binary mixtures of pyrethroids produce differential effects on Ca2+ influx and glutamate release at isolated presynaptic nerve terminals from rat brain. Pestic Biochem Physiol 99(2):131–139

    CAS  Google Scholar 

  • Trimble AJ, Weston DP, Belden BJ, Lydy MJ (2009) Identification and evaluation of pyrethroid insecticide mixtures in urban sediments. Environ Toxicol Chem 28(8):1687–1695

    CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

  • U. S. Environmental Protection Agency (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064. Duluth, MN

  • U. S. Environmental Protection Agency (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA-821-R-02-012

  • U. S. Environmental Protection Agency (2004) Overview of the ecological risk assessment process in the office of pesticide programs. Washington DC: Office of Pesticide Programs. http://www.epa.gov/espp/consultation/ecorisk-overview.pdf

  • Villa S, Vighi M, Finizio A (2014) Experimental and predicted acute toxicity of antibacterial compounds and their mixtures using the luminescent bacterium Vibrio fischeri. Chemosphere 108:239–244

    CAS  Google Scholar 

  • Werner I, Moran K (2008) Effects of pyrethroid insecticides on aquatic organisms. Synthetic Pyrethroids, Am Chem Soc 991:310–334

    CAS  Google Scholar 

  • Werner I, Deanovic LA, Hinton DE, Henderson JD, De Oliviera GH, Wilson BW, Krueger W, Wallender WW, Oliver MN, Zalom FG (2002a) Toxicity of stormwater runoff after dormant spray application of diazinon and esfenvalerate (Asana) in a French prune orchard, Glenn County, California, USA. Bull Environ Contam Toxicol 68(1):29–36

    CAS  Google Scholar 

  • Werner I, Geist J, Okihiro M, Rosenkranz P, Hinton DE (2002b) Effects of dietary exposure to the pyrethroid pesticide esfenvalerate on medaka (Oryzias latipes). Mar Environ Res 54(3–5):609–614

    CAS  Google Scholar 

  • Werner I, Deanovic LA, Markiewicz D, Khamphanh M, Reece CK, Stillway M, Reece C (2010) Monitoring acute and chronic water column toxicity in the northern Sacramento-San Joaquin estuary, California, USA, using the euryhaline amphipod, Hyalella azteca: 2006 to 2007. Environ Toxicol Chem 29(10):2190–2199

    CAS  Google Scholar 

  • Weston DP, Lydy MJ (2010) Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California. Environ Sci Technol 44(5):1833–1840

    CAS  Google Scholar 

  • Weston DP, Lydy MJ (2012) Stormwater input of pyrethroid insecticides to an urban river. Environ Toxicol Chem, n/a–n/a

  • Weston DP, You J, Lydy MJ (2004) Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environ Sci Technol 38(10):2752–2759

    CAS  Google Scholar 

  • Weston DP, Zhang M, Lydy MJ (2008) Identifying the cause and source of sediment toxicity in an agriculture-influenced creek. Environ Toxicol Chem 27(4):953–962

    CAS  Google Scholar 

  • Weston DP, Ding Y, Zhang M, Lydy MJ (2013) Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides. Chemosphere 90(3):958–964

    CAS  Google Scholar 

  • Weston DP, Asbell AM, Lesmeister SA, Teh SJ, Lydy MJ (2014) Urban and agricultural pesticide inputs to a critical habitat for the threatened delta smelt (Hypomesus transpacificus). Environ Toxicol Chem 33(4):920–929

    CAS  Google Scholar 

  • Wheelock CE, Miller JL, Miller MJ, Phillips BM, Gee SJ, Tjeerdema RS, Hammock BD (2005) Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca. Aquat Toxicol 74(1):47–52

    CAS  Google Scholar 

  • Wouters W, van den Bercken J (1978) Action of pyrethroids. Gen Pharmacol 9:387–398

    CAS  Google Scholar 

  • Xue R-D, Ali A (1994) Oviposition, fecundity, and body size of a pestiferous Midge, Chironomus crassicaudatus (Diptera: Chironomidae). Environ Entomol 23(6):1480–1484

    Google Scholar 

  • Yang W, Gan J, Hunter W, Spurlock F (2006) Effect of suspended solids on bioavailability of pyrethroid insecticides. Environ Toxicol Chem 25(6):1585–1591

    Google Scholar 

Download references

Acknowledgments

The authors thank Linda Deanovic, Matthias Hasenbein, Keith Miles, Emily Parry, Marie Stillway, Inge Werner and Thomas Young for their support. This study was funded by the California State Water Resources Control Board (contract No. 06-447-300to REC), California Department of Pesticide Regulation (contract No. 10-C0096 to SPL), the State and Federal Contractors Water Agency (contract No. 201301957 to REC), and a postgraduate scholarship (contract No. DOK-121-10 to JG) by Bayerische Forschungsstiftung, Germany. The authors acknowledge the support by the Faculty Graduate Center Weihenstephan of TUM Graduate School at Technische Universität München, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Connon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasenbein, S., Lawler, S.P., Geist, J. et al. The use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms. Ecotoxicology 24, 746–759 (2015). https://doi.org/10.1007/s10646-015-1420-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1420-1

Keywords

Navigation