Asymptotically locally AdS and flat black holes in Horndeski theory

Andres Anabalon, Adolfo Cisterna, and Julio Oliva
Phys. Rev. D 89, 084050 – Published 10 April 2014

Abstract

In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exists a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical temperature at which a Hawking-Page phase transition between the black hole and the soliton occurs. We extend the solution to arbitrary dimensions greater than 4 and show that the presence of a cosmological term in the action allows one to consider the case in which the standard kinetic term for the scalar it is not present. In such a scenario, the solution reduces to an asymptotically flat black hole.

  • Figure
  • Figure
  • Received 16 December 2013

DOI:https://doi.org/10.1103/PhysRevD.89.084050

© 2014 American Physical Society

Authors & Affiliations

Andres Anabalon1,2,*, Adolfo Cisterna3,†, and Julio Oliva4,‡

  • 1Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
  • 2Laboratoire de Physique, Université de Lyon, UMR 5672, CNRS, École Normale Supérieure de Lyon, 46 allé d’Italie, F-69364 Lyon Cedex 07, France
  • 3Instituto de Física, Pontificia Universidad de Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile
  • 4Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia, Chile

  • *andres.anabalon@uai.cl
  • adolfo.cisterna.r@mail.pucv.cl
  • julio.oliva@uach.cl

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 8 — 15 April 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×