Skip to main content
Log in

Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Low solubility of sterols in aqueous media limits efficient steroid production mediated by biocatalytic microorganisms such as Mycobacterium. Sterol emulsion technologies have been developed with low success rates, largely due to the complexity of generating stable and bioavailable particles. In this study, several aqueous dispersions of sterols in-water of different particle sizes were bioconverted to 4-androstene-3,17-dione (AD) in a solvent-free environment, using a classic microorganism Mycobacterium sp. B3805 as a model system. According to our results, the high concentration (20 g/L) phytosterol dispersions with the smallest particle size tested (370 nm) achieved up to 54% (7.4 g/L) AD production yield in 11 days. Moreover, the use of 0.1 biomass/sterols ratio in a complex bioconversion media containing yeast extract, and a 1:1 glucose/microdispersion ratio in the presence of the surfactant DK-Ester P-160 (HLB16), allowed homogenization and increased microdispersion stability, thus achieving the best results using emulsion technologies to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodina, N. V., Molchanova, M. A., Voishvillo, N. E., Andryushina, V. A., & Stytsenko, T. S. (2008). Conversion of Phytosterols into Androstenedione by Mycobacterium neoaurum. Applied Biochemistry and Microbiology, 44, 56–62.

    Article  CAS  Google Scholar 

  2. Wang, F., Yao, K., & Wei, D.. (2011). From Soybean Phytosterols to Steroid Hormones. In Agricultural and Biological Sciences (Prof. Hany El-Shemy Ed.), ISBN 978-953-307-535-8, InTech. pp 231-252.

  3. YG, X., Guan, Y. X., Wang, H. Q., & Yao, S. J. (2014). Microbial side-chain cleavage of phytosterols by Mycobacteria in vegetable oil/aqueous two-phase system. Applied Biochemistry and Biotechnology, 174, 522–533.

    Article  Google Scholar 

  4. Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: current state and prospects. Applied Microbiology and Biotechnology, 94, 1423–1447.

    Article  CAS  Google Scholar 

  5. Donova, M. V., Nikolayeva, V. M., Dovbnya, D. V., Gulevskaya, S., & Suzina, N. E. (2007). Methyl-beta-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology, 153, 1981–1992.

    Article  CAS  Google Scholar 

  6. Malaviya, A., & Gomes, J. (2008). Nutrient broth/PEG200/TritonX114/Tween80/Chloroform microemulsion as a reservoir of solubilized sitosterol for biotransformation to androstenedione. Journal of Industrial Microbiology & Biotechnology, 35, 1435–1440.

    Article  CAS  Google Scholar 

  7. Rossi, L., Seijen, T., Jack, W. M., Melnikov, S. M., & Velikov, K. Colloidal phytosterols: synthesis, characterization and bioaccessibility. Soft Matter, 6(5), 928.

  8. Gao, X. Q., Feng, J. X., Wang, X. D., & Hua, Q. (2016). Enhanced Steroid Metabolites Production by Resting Cell Phytosterol Bioconversion. Chemical and Biochemical Engineering Quarterly, 29, 567–573.

    Article  Google Scholar 

  9. Stefanov, S., Yankov, D., & Beschkov, V. (2006). Biotransformation of Phytosterols to Androstenedione in Two Phase Water-oil Systems. Chemical and Biochemical Engineering Quarterly, 20, 421–427.

    CAS  Google Scholar 

  10. Wang, Z. (2007). The potential of cloud point system as a novel two-phase partitioning system for biotransformation. Applied Microbiology and Biotechnology, 75, 1–10.

    Article  CAS  Google Scholar 

  11. Cabral, J., Fernandes, P., Marques, M., & Carvalho, F. (2009). Screening for suitable solvents as substrate carriers for the microbial side-chain cleavage of sitosterol using microtitre plates. Process Biochemistry, 44, 556–561.

    Article  Google Scholar 

  12. Shao, M., Zhang, X., Rao, Z., Xu, M., Yang, T., Li, H., & Xu, Z. (2015). Enhanced Production of Androst-1 , 4-Diene- 3 , 17-Dione by Mycobacterium neoaurum JC- 12 Using Three-Stage Fermentation Strategy. PLoS One, 10, 1–13.

    Google Scholar 

  13. Wang, Z., Neves, M., Isoda, H., & Nakajima, M. (2015). Preparation and Characterization of Micro/Nano-emulsions Containing Functional Food Components Japan. Journal of Food Engineering, 16(4), 263–276.

    Google Scholar 

  14. Engel, R., & Schubert, H. (2005). Formulation of phytosterols in emulsions for increased dose response in functional foods. Innovative Food Science & Emerging Technologies, 6, 233–237.

    Article  CAS  Google Scholar 

  15. Leong, W. F., Lai, O. M., Long, K., Che Man, Y. B., Misran, M., & Tan, C. P. (2011). Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chemistry, 129, 77–83.

    Article  CAS  Google Scholar 

  16. Mcclements, D. J. (2012). Crystals and crystallization in oil-in-water emulsions : Implications for emulsion-based delivery systems. Advances in Colloid and Interface Science, 174, 1–30.

    Article  CAS  Google Scholar 

  17. Voishvillo, N. E., Andryushina, V. A., Savinova, T. S., & Stytsenko, T. S. (2004). Conversion of Androstenedione and Androstadienedione by Sterol-Degrading Bacteria. Applied Biochemistry and Microbiology, 40, 463–469.

    Article  CAS  Google Scholar 

  18. Noh, S. K., Kim, M. K., Yoon, W. T., Park, K. M., & Park, S. O. (2004). Method for preparation of Androst-4-ene-3,17-dione and Androsta-1,4-ene-3,17-dione, US Patent 0152153 A1.

  19. Harting, T., & Fuenzalida, M. (2012). Dispersion of phytosterols. US Patent 20120046254 A1.

  20. Olivares, A., & Acevedo, F. (2011). Effect of inoculation strategies, substrate to biomass ratio and nitrogen sources on the bioconversion of wood sterols by Mycobacterium sp. World Journal of Microbiology and Biotechnology, 27, 2513–2520.

    Article  CAS  Google Scholar 

  21. Rossi, L., Seijen ten Hoorn, J. W. M., Melnikov, S. M., & Velikov, K. P. (2010). Colloidal phytosterols: synthesis, characterization and bioaccessibility. Soft Matter, 6(5), 928–936.

    Article  CAS  Google Scholar 

  22. Mcclements, D. J., Decker, E. A., & Weiss, J. (2007). Emulsion-Based Delivery Systems for Lipophilic Bioactive Components. Journal of Food Science, 72, 109–124.

    Article  Google Scholar 

  23. McClements, D. J., & Food Emulsions Principles, Practices, and Techniques. (2004). Implications for emulsion-based delivery systems. Advances in Colloid and Interface Science, 174, 1–30 (2012).

    Article  Google Scholar 

  24. Sagalowicz, L., & Leser, M. E. (2010). Current Opinion in Colloid & Interface Science Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science, 15, 61–72.

    Article  CAS  Google Scholar 

  25. Mcclements, D. J., & Rao, J. (2011). Food-Grade Nanoemulsions : Formulation , Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 4, 37–41.

    Google Scholar 

  26. Yuan, J. J., Guan, Y. X., Wang, Y. T., Wang, H. Q., & Yao, S. J. (2016). Side-chain cleavage of phytosterols by Mycobacterium sp. MB 3683 in a biphasic ionic liquid/aqueous system. Journal of Chemical Technology and Biotechnology, 91, 2631–2637.

    Article  CAS  Google Scholar 

  27. Kutney, J. P., Milanova, R., Vassilev, C., Stefanov, S., & Nedelcheva, N. (2000). Process for the microbial conversion of phytosterols to androstenedione and androstadienedione. US Patent 006071714 A

  28. Marques, M. P., Carvalho, C., De Cabral, J. M., & Fernandes, P. (2010). Scaling-Up of Complex Whole-Cell Bioconversions in Conventional and Non-Conventional Media. Biotechnology and Bioengineering, 106, 619–626.

    Article  CAS  Google Scholar 

  29. Marques, M., Carvalho, F., Carvalho, C., Cabral, J., & Fernandes, P. (2010). Steroid bioconversion : Towards green processes. Food and Bioproducts Processing, 88, 12–20.

    Article  CAS  Google Scholar 

  30. Bhatti, H. N., & Khera, R. A. (2012). Biological transformations of steroidal compounds: A review. Steroids, 12, 1–24.

    Google Scholar 

  31. Malaviya, A., & Gomes, J. (2008). Androstenedione production by biotransformation of phytosterols. Bioresource Technology, 99, 6725–6737.

    Article  CAS  Google Scholar 

  32. Mcclements, D. J. (2012). Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid & Interface Science, 17, 235–245.

    Article  CAS  Google Scholar 

  33. Donova, M. V., & Nikolaeva, V. (2005). M and Egorova OV, Enzymes involved in modification of the steroid nucleus of industrial mycobacterial strains: isolation, functions, and properties. Applied Biochemistry and Microbiology, 41, 514–520.

    Article  CAS  Google Scholar 

  34. Yuan, J., Chen, G., Cheng, S., Ge, F., Qiong, W., Li, W., & Li, J. (2015). Accumulation of 9α-hydroxy-4-androstene-3,17-dione by co-expressing kshA and kshB encoding component of 3-ketosteroid-9α-hydroxylase in Mycobacterium sp. NRRL B-3805. Sheng Wu Gong Cheng Xue Bao, 31(4), 523–533.

    Google Scholar 

  35. Rodríguez-García, A., Fernández-Alegre, E., Morales, A., Sola-Landa, A., Lorraine, J., Macdonald, S., Dovbnya, D., Smith, M. C. M., Donova, M., & Barreiro, C. (2016). Complete genome sequence of ‘Mycobacterium neoaurum’ NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. Journal of Biotechnology, 224, 64–65.

    Article  Google Scholar 

  36. Casabon, I., Crowe, A. M., Liu, J., & Eltis, L. D. (2013). FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. Molecular Microbiology, 87, 269–283.

    Article  CAS  Google Scholar 

  37. Sripalakit, P., Wichai, U., & Saraphanchotiwitthaya, A. (2006). Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid-converting microbial strains. Journal of Molecular Catalysis B: Enzymatic, 41, 49–54.

    Article  CAS  Google Scholar 

  38. Huang, C. L., Chen, Y. R., & Liu, W. H. (2006). Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme and Microbial Technology, 39, 296–300.

    Article  CAS  Google Scholar 

  39. Perez, C., Falero, A., Llanes, N., Hung, B. R., Hervé, M. E., Palmero, A., & Martí, E. (2003). Resistance to androstanes as an approach for androstandienedione yield enhancement in industrial mycobacteria. Journal of Industrial Microbiology & Biotechnology, 30, 623–626.

    Article  CAS  Google Scholar 

  40. Donova, M. V., Gulevskaya, S., Dovbnya, D., & Puntus, I. F. (2005). Mycobacterium sp. mutant strain producing 9alpha-hydroxyandrostenedione from sitosterol. Applied Microbiology and Biotechnology, 67, 671–678.

    Article  CAS  Google Scholar 

  41. YG, X., Guan, Y. X., Wang, H. Q., & Yao, S. J. (2014). Microbial side-chain cleavage of phytosterols by mycobacteria in vegetable oil/aqueous two-phase system. Applied Biochemistry and Biotechnology, 174, 522–533.

    Article  Google Scholar 

  42. Kutney, J. (2003). Process for fermentation of phytosterols to androstadienedione, EU Patent 1 507 867 B1.

  43. Zhang, X. Y., Peng, Y., Su, Z. R., Chen, Q. H., Ruan, H., & He, G. Q. (2013). Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08. Journal of Zhejiang University Science B - Biomedicine & Biotechnology, 14, 132–143.

    CAS  Google Scholar 

  44. Yao, K., Wang, F., Zhang, H. C., & Wei, D. Z. (2013). Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metabolic Engineering, 15, 75–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant no. 12CTI-16838 from CORFO and by grant operational expenses no. 21110224 from Conicyt. R.A. Mancilla was doctoral fellow supported by CONICYT-Chile. The authors would like to thank to Msc Raul Aravena from Nutrartis S.A. for his support in formulating dispersions, Dr. Cecilia Brañez from Naturalis S.A. for the conceptual contribution to the project, and Karen Marquez and Camila Ahumada from PUCV research staff for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo A. Mancilla.

Ethics declarations

Disclosures

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancilla, R.A., Little, C. & Amoroso, A. Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805. Appl Biochem Biotechnol 185, 494–506 (2018). https://doi.org/10.1007/s12010-017-2665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2665-3

Keywords

Navigation