Skip to main content
Log in

Exact asymptotically flat charged hairy black holes with a dilaton potential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We find broad classes of exact 4-dimensional asymptotically flat black hole solutions in Einstein-Maxwell theories with a non-minimally coupled dilaton and its nontrivial potential. We consider a few interesting limits, in particular, a regular generalization of the dilatonic Reissner-Nordström solution and, also, smooth deformations of supersymmetric black holes. Further examples are provided for more general dilaton potentials. We discuss the thermodynamical properties and show that the first law is satisfied. In the non-extremal case the entropy depends, as expected, on the asymptotic value of the dilaton. In the extremal limit, the entropy is determined purely in terms of charges and is independent of the asymptotic value of the dilaton. The attractor mechanism can be used as a criterion for the existence of the regular solutions. Since there is a ‘competition’ between the effective potential and dilaton potential, we also obtain regular extremal black hole solutions with just one U(1) gauge field turned on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [INSPIRE].

    Article  ADS  Google Scholar 

  2. B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971) 331 [INSPIRE].

    Article  ADS  Google Scholar 

  3. R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5 (1972) 2419 [INSPIRE].

    ADS  Google Scholar 

  4. R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields, Phys. Rev. D 5 (1972) 2439 [INSPIRE].

    ADS  Google Scholar 

  5. S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J.D. Bekenstein, ‘No hair: twenty-five years after, in Proceedings of the Second International Andrei D. Sakharov Conference in Physics, I.M. Dremin and A.M. Semikhatov eds., World Scientific, Singapore (1997).

    Google Scholar 

  7. J. Bekenstein, Novelno scalar hairtheorem for black holes, Phys. Rev. D 51 (1995) 6608 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. D. Sudarsky, A simple proof of a no hair theorem in Einstein Higgs theory,, Class. Quant. Grav. 12 (1995) 579 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. Sudarsky and T. Zannias, Spherical black holes cannot support scalar hair, Phys. Rev. D 58 (1998) 087502 [gr-qc/9712083] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. T. Hertog, Towards a novel no-hair theorem for black holes, Phys. Rev. D 74 (2006) 084008 [gr-qc/0608075] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. T. Torii, K. Maeda and M. Narita, Scalar hair on the black hole in asymptotically anti-de Sitter space-time, Phys. Rev. D 64 (2001) 044007 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. C. Martinez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev. D 70 (2004) 084035 [hep-th/0406111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. E. Winstanley, On the existence of conformally coupled scalar field hair for black holes in (Anti-)de Sitter space, Found. Phys. 33 (2003) 111 [gr-qc/0205092] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  14. A. Anabalon and J. Oliva, Exact hairy black holes and their modification to the universal law of gravitation, Phys. Rev. D 86 (2012) 107501 [arXiv:1205.6012] [INSPIRE].

    ADS  Google Scholar 

  15. J. Aparicio, D. Grumiller, E. Lopez, I. Papadimitriou and S. Stricker, Bootstrapping gravity solutions, JHEP 05 (2013) 128 [arXiv:1212.3609] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Xu and L. Zhao, Charged black hole with a scalar hair in (2 + 1) dimensions, Phys. Rev. D 87 (2013) 124008 [arXiv:1305.5446] [INSPIRE].

    ADS  Google Scholar 

  17. L. Zhao, W. Xu and B. Zhu, Novel rotating hairy black hole in (2 + 1)-dimensions, arXiv:1305.6001 [INSPIRE].

  18. F. Correa, A. Faundez and C. Martinez, Rotating hairy black hole and its microscopic entropy in three spacetime dimensions, Phys. Rev. D 87 (2013) 027502 [arXiv:1211.4878] [INSPIRE].

    ADS  Google Scholar 

  19. A. Anabalon, Exact hairy black holes, arXiv:1211.2765 [INSPIRE].

  20. A. Anabalon, F. Canfora, A. Giacomini and J. Oliva, Black holes with primary hair in gauged N = 8 supergravity, JHEP 06 (2012) 010 [arXiv:1203.6627] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Anabalon and A. Cisterna, Asymptotically (Anti) de Sitter black holes and wormholes with a self interacting scalar field in four dimensions, Phys. Rev. D 85 (2012) 084035 [arXiv:1201.2008] [INSPIRE].

    ADS  Google Scholar 

  22. A. Anabalon and H. Maeda, New charged black holes with conformal scalar hair, Phys. Rev. D 81 (2010) 041501 [arXiv:0907.0219] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. Y. Bardoux, M.M. Caldarelli and C. Charmousis, Conformally coupled scalar black holes admit a flat horizon due to axionic charge, JHEP 09 (2012) 008 [arXiv:1205.4025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. H. Lü, Y. Pang and C. Pope, AdS dyonic black hole and its thermodynamics, arXiv:1307.6243 [INSPIRE].

  25. D. Sudarsky and J.A. Gonzalez, On black hole scalar hair in asymptotically Anti-de Sitter space-times, Phys. Rev. D 67 (2003) 024038 [gr-qc/0207069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. U. Nucamendi and M. Salgado, Scalar hairy black holes and solitons in asymptotically flat space-times, Phys. Rev. D 68 (2003) 044026 [gr-qc/0301062] [INSPIRE].

    ADS  Google Scholar 

  27. A. Anabalon, Exact black holes and universality in the backreaction of non-linear σ-models with a potential in (A)dS 4, JHEP 06 (2012) 127 [arXiv:1204.2720] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Acena, A. Anabalon and D. Astefanesei, Exact hairy black brane solutions in AdS 5 and holographic RG flows, Phys. Rev. D 87 (2013) 124033 [arXiv:1211.6126] [INSPIRE].

    ADS  Google Scholar 

  29. D. Núñez, H. Quevedo and D. Sudarsky, Black holes have no short hair, Phys. Rev. Lett. 76 (1996) 571 [gr-qc/9601020] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A. Anabalon and D. Astefanesei, On attractor mechanism of AdS 4 black holes, arXiv:1309.5863 [INSPIRE].

  31. A. Salvio, Holographic superfluids and superconductors in dilaton-gravity, JHEP 09 (2012) 134 [arXiv:1207.3800] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Salvio, Transitions in dilaton holography with global or local symmetries, JHEP 03 (2013) 136 [arXiv:1302.4898] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli flow and non-supersymmetric AdS attractors, JHEP 04 (2008) 074 [arXiv:0711.0036] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  39. D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. R. Gregory and J.A. Harvey, Black holes with a massive dilaton, Phys. Rev. D 47 (1993) 2411 [hep-th/9209070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. P. Dobiasch and D. Maison, Stationary, spherically symmetric solutions of Jordans unified theory of gravity and electromagnetism, Gen. Rel. Grav. 14 (1982) 231 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. G.W. Gibbons and D.L. Wiltshire, Black holes in Kaluza-Klein theory, Annals Phys. 167 (1986) 201 [Erratum ibid. 176 (1987) 393] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole thermodynamics, Gen. Rel. Grav. 40 (2008) 2069 [hep-th/0611140] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. R. Kallosh, A.D. Linde, T. Ortín, A.W. Peet and A. Van Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D 46 (1992) 5278 [hep-th/9205027] [INSPIRE].

    ADS  Google Scholar 

  47. G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. D. Astefanesei, N. Banerjee and S. Dutta, Moduli and electromagnetic black brane holography, JHEP 02 (2011) 021 [arXiv:1008.3852] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. D. Astefanesei, N. Banerjee and S. Dutta, Near horizon data and physical charges of extremal AdS black holes, Nucl. Phys. B 853 (2011) 63 [arXiv:1104.4121] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. D. Astefanesei and H. Yavartanoo, Stationary black holes and attractor mechanism, Nucl. Phys. B 794 (2008) 13 [arXiv:0706.1847] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Sen, Entropy function for heterotic black holes, JHEP 03 (2006) 008 [hep-th/0508042] [INSPIRE].

    Article  ADS  Google Scholar 

  57. D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. R. Allahverdi, K. Enqvist, J. García-Bellido, A. Jokinen and A. Mazumdar, MSSM flat direction inflation: Slow roll, stability, fine tunning and reheating, JCAP 06 (2007) 019 [hep-ph/0610134] [INSPIRE].

    Article  ADS  Google Scholar 

  59. E.E. Flanagan and R.M. Wald, Does back reaction enforce the averaged null energy condition in semiclassical gravity?, Phys. Rev. D 54 (1996) 6233 [gr-qc/9602052] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. C. Barcelo and M. Visser, Scalar fields, energy conditions and traversable wormholes, Class. Quant. Grav. 17 (2000) 3843 [gr-qc/0003025] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. M. Salgado, D. Sudarsky and U. Nucamendi, The violation of the weak energy condition, is it generic of spontaneous scalarization?, Phys. Rev. D 70 (2004) 084027 [gr-qc/0402126] [INSPIRE].

    ADS  Google Scholar 

  62. D. Astefanesei and E. Radu, Quasilocal formalism and black ring thermodynamics, Phys. Rev. D 73 (2006) 044014 [hep-th/0509144] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  63. R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 2927 [hep-th/0511096] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. D. Astefanesei, R.B. Mann, M.J. Rodriguez and C. Stelea, Quasilocal formalism and thermodynamics of asymptotically flat black objects, Class. Quant. Grav. 27 (2010) 165004 [arXiv:0909.3852] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. D. Astefanesei, M.J. Rodriguez and S. Theisen, Thermodynamic instability of doubly spinning black objects, JHEP 08 (2010) 046 [arXiv:1003.2421] [INSPIRE].

    Article  ADS  Google Scholar 

  66. F. Leblond, D. Marolf and R.C. Myers, Tall tales from de Sitter space 1: Renormalization group flows, JHEP 06 (2002) 052 [hep-th/0202094] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. D. Astefanesei, R.B. Mann and E. Radu, Reissner-Nordstrom-de Sitter black hole, planar coordinates and dS/CFT, JHEP 01 (2004) 029 [hep-th/0310273] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Anabalón.

Additional information

ArXiv ePrint: 1308.1693

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anabalón, A., Astefanesei, D. & Mann, R. Exact asymptotically flat charged hairy black holes with a dilaton potential. J. High Energ. Phys. 2013, 184 (2013). https://doi.org/10.1007/JHEP10(2013)184

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)184

Keywords

Navigation