Skip to main content
Log in

Hot Fluids and Nonlinear Quantum Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrödinger, Klein–Gordon, and Pauli–Schrödinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialynicki-Birula, I., Mycielski, J.: Ann. Phys. 100, 62 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  2. Mielnik, B.: Commun. Math. Phys. 37, 221 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  3. Mielnik, B.: Commun. Math. Phys. 101, 323 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Mielnik, B.: Phys. Lett. A 289, 1 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Kibble, T.W.B.: Commun. Math. Phys. 65, 189 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Kibble, T.W., Daemi, R.: J. Phys. A 13, 141 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Weinberg, S.: Phys. Rev. Lett. 62, 485 (1989)

    Article  ADS  Google Scholar 

  8. Weinberg, S.: Ann. Phys. 194, 336 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gisin, N.: Helv. Phys. Acta 62, 363 (1989)

    MathSciNet  Google Scholar 

  10. Gisin, N.: Phys. Lett. A 143, 1 (1990)

    Article  ADS  Google Scholar 

  11. Simon, C., Buzek, V., Gisin, N.: Phys. Rev. Lett. 87, 17 (2001)

    Google Scholar 

  12. Polchinski, J.: Phys. Rev. Lett. 66, 397 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Haag, R., Bannier, U.: Commun. Math. Phys. 60, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  14. Waniewski, J.: J. Math. Phys. 27, 1796 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Peres, A.: Phys. Rev. Lett. 63, 1114 (1989)

    Article  ADS  Google Scholar 

  16. Brody, D.C., Gustavsson, A.C.T., Hughston, L.P.: J. Phys. A: Math. Theor. 43, 082003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jordan, T.F.: Phys. Rev. A 73, 022101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Madelung, E.: Z. Phys. 40, 322 (1927)

    Article  ADS  Google Scholar 

  19. Bohm, D.: Phys. Rev. 85, 166 (1952)

    Article  ADS  MATH  Google Scholar 

  20. Takabayasi, T.: Phys. Rev. 102, 297 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  21. Takabayasi, T.: Nuovo Cimento 3, 233 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  22. Takabayasi, T.: Prog. Theor. Phys. 14, 283 (1955)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Takabayasi, T.: Prog. Theor. Phys. 12, 810 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  24. Takabayasi, T.: Prog. Theor. Phys. 13, 222 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  25. Takabayasi, T.: Prog. Theor. Phys. 70, 1 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Takabayasi, T.: Prog. Theor. Phys. Suppl. 4, 2 (1957)

    Article  ADS  Google Scholar 

  27. Cufaro Petroni, N., Gueret, Ph., Vigier, J.-P.: Nuovo Cimento 81, 243 (1984)

    Article  MathSciNet  Google Scholar 

  28. Aron, J.: Compt. Rend. 251, 921 (1960)

    MathSciNet  Google Scholar 

  29. Lin, C.-K., Wu, K.-C.: J. Math. Pures Appl. 98, 328 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Spiegel, E.A.: Physica D 1, 236 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Ercolani, N., Montgomery, R.: Phys. Lett. A 180, 402 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. Nassar, A.B.: J. Phys. A: Math. Gen. 18, L509 (1985)

    Article  ADS  Google Scholar 

  33. Nonnenmacher, T.F., Dukek, G., Baumann, G.: Lett. Nuovo Cim. 36, 453 (1983)

    Article  MathSciNet  Google Scholar 

  34. Kuz’menkov, L.S., Maksimov, S.G.: Theor. Math. Phys. 118, 227 (1999)

    Article  MATH  Google Scholar 

  35. Manfredi, G., Haas, F.: Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  36. Shukla, P.K., Eliasson, B.: Phys. Rev. Lett 96, 245001 (2006)

    Article  ADS  Google Scholar 

  37. Eliasson, B., Shukla, P.K.: Plasma Fusion Res. 4, 032 (2009)

    Article  ADS  Google Scholar 

  38. Hong, W.-P., Jung, Y.-D.: Phys. Lett. A 374, 4599 (2010)

    Article  ADS  MATH  Google Scholar 

  39. Andreev, P.A., Kuz’menkov, L.S.: Phys. Rev. A 78, 053624 (2008)

    Article  ADS  Google Scholar 

  40. Andreev, P.A., Kuz’menkov, L.S., Trukhanova, M.I.: Phys. Rev. B 84, 245401 (2011)

    Article  ADS  Google Scholar 

  41. Haas, F., Eliasson, B., Shukla, P.K.: Phys. Rev. E 85, 056411 (2012)

    Article  ADS  Google Scholar 

  42. Fröhlich, H.: Physica A 37, 215 (1967)

    Google Scholar 

  43. Haas, F.: Quantum plasmas: An Hydrodynamic Approach. Springer, Berlin Heidelberg New York (2011)

    Book  Google Scholar 

  44. Marklund, M., Brodin, G.: Phys. Rev. Lett. 98, 025001 (2007)

    Article  ADS  Google Scholar 

  45. Brodin, G., Marklund, M.: New J. Phys. 9, 277 (2007)

    Article  Google Scholar 

  46. Mahajan, S.M., Asenjo, F.A.: Phys. Rev. Lett. 107, 195003 (2011)

    Article  ADS  Google Scholar 

  47. Asenjo, F.A., Muñoz, V., Valdivia, J.A., Mahajan, S.M.: Phys. Plasmas 18, 012107 (2011)

    Article  ADS  Google Scholar 

  48. Kuz’menkov, L.S., Maksimov, S.G., Fedoseev, V.V.: Theor. Math. Phys. 126, 110 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kuz’menkov, L.S., Maksimov, S.G., Fedoseev, V.V.: Theor. Math. Phys. 126, 212 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Andreev, P.A., Kuz’menkov, L.S.: Russian Phys. J. 50, 1251 (2007)

    Article  ADS  MATH  Google Scholar 

  51. Koide, T.: Phys. Rev. C 87, 034902 (2013)

    Article  ADS  Google Scholar 

  52. Kaniadakis, G.: Physica A 307, 172 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Pesci, A.I., Goldstein, R.E.: Nonlinearity 18, 211 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Pesci, A.I., Goldstein, R.E., Uys, H.: Nonlinearity 18, 227 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Feynman, R.P., Gell-Mann, M.: Phys. Rev. 109, 193 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Pesci, A.I., Goldstein, R.E., Uys, H.: Nonlinearity 18, 1295 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Carbonaro, P.: EPL 100, 65001 (2012)

    Article  ADS  Google Scholar 

  58. Weinberg, S.: Gravitation and Cosmology. John Wiley and Sons, Inc., New York (1972)

    Google Scholar 

  59. Mahajan, S.M.: Phys. Rev. Lett. 90, 035001 (2003)

    Article  ADS  Google Scholar 

  60. Ginzburg, V.L., Landau, L.D.: Zh. Eksp. Teor. Fiz. 20, 1064 (1950). English translation in: Landau, L.D.: Collected papers, pp. 546. Pergamon Press, Oxford (1965)

  61. It is impossible to adequately refer to the immense literature on the NSE. A comprehensive reference list is given in: Ablowitz, M., Prinari, B.: Scholarpedia 3, 5561 (2008). Other classic works are Chiao, R.Y., Garmire, E., Townes, C.H.: Phys. Rev. Lett. 13, 479 (1964); Zakharov, V.E.: J. Appl. Mech. Tech. Phys. 9, 190 (1968); Hasimoto, H.: J. Fluid Mech. 51, 477 (1972); Zakharov, V.E., Shabat, A.B.: Sov. Phys. JETP 34, 62 (1972); Novikov, S.P., Manakov, S.V., Pitaevskii, L.B., Zakharov, V.E.: Theory of Solitons-The Inverse Scattering Method. Plenum Press, New York (1984); Sulem, C., Sulem, P.-L.: The Nonlinear Schrodinger Equation. Self-Focusing and Wave Collapse. Springer-Verlag, New York (1999). Authors recent work on two physical systems that lead to generalized NSEs include: Berezhiani, V.I.,Mahajan, S.M.: Phys. Rev. E 52, 2 (1995); Mahajan, S.M., Shatashvili, N.L., Berezhiani, V.I.: Phys. Rev. E 80, 066404 (2009)

  62. Takabayasi, T.: Prog. Theo. Phys. 14, 283 (1955)

  63. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

  64. Asenjo, F.A., Muñoz, V., Valdivia, J.A.: Phys. Rev. E 81, 056405 (2010)

  65. Andreev, P.A., Kuz’menkov, L.S.: Int. J. Mod. Phys. B 26, 1250186 (2012)

  66. Berezhiani, V.I., Mahajan, S.M.: Phys. Rev. E 52, 2 (1995)

Download references

Acknowledgments

Illuminating discussions with Profs. George Sudarshan and Cecile Dewitt are gratefully acknowledged. SMM’s work was supported by the US-DOE grants DE-FG02-04ER54742. FAA thanks to CONICyT-Chile for Funding N o 79130002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. Asenjo.

Appendix A

Appendix A

To accommodate spin (an internal degree of freedom) in a relativistic theory, we must take the following essential steps:

  • 1)  Modify the classical energy momentum tensor to include a new, relativistically correct, internal (spin generated) stress term

    $$ \mathcal{T}^{\mu\nu}= g P^{\mu} P^{\nu}+{\Pi}\eta^{\mu\nu}+ g\frac{\hbar^{2}}{8}\partial^{\mu} M_{\alpha\beta}\partial^{\nu} M^{*\alpha\beta}, $$
    (53)

    which will transforms to the “quantum” energy momentum tensor

    $$ \mathcal{T}_{q}^{\mu\nu}= g\left(P^{\mu} P^{\nu}+\frac{\hbar}{2i}\partial^{\mu} \frac{\hbar}{2i}\partial^{\nu}\ln g\right)+{\Pi}\eta^{\mu\nu}+ g\frac{\hbar^{2}}{8}\partial^{\mu} M_{\alpha\beta}\partial^{\nu} M^{*\alpha\beta} $$
    (54)

    when subjected to the prescription (8). The stress is expressed in terms of the fully spin antisymmetric tensor

    $$ M_{\alpha\beta}=\frac{{\Psi}^{\dag}\sigma_{\alpha\beta} {\Psi}}{{\Psi}^{\dag}{\Psi}} , $$
    (55)

    where σ α β =i γ α γ β , and γ α are the Dirac matrices.

  • 2)  In addition to the contribution to the energy momentum tensor, we have to include the effect of spin-electromagnetic field interaction (through the associated magnetic moment). The complete equation of motion

$$ \partial_{\mu} \mathcal{T}_{q}^{\mu\nu}=q g F^{\nu\mu}P_{\mu} + d g M_{\alpha\beta} \partial^{\nu} F^{\alpha\beta}, $$
(56)

then, expands to

$$\begin{array}{@{}rcl@{}} \frac{1}{g}\partial^{\nu}{\Pi}+ P^{\mu}\partial_{\mu} P^{\nu}-\frac{\hbar^{2}}{4}\partial^{\nu}(\frac{1}{2}\partial_{\mu}\zeta\partial^{\mu}\zeta+\Box\zeta)= q F^{\nu\mu}P_{\mu} + κ M_{\alpha\beta} \partial^{\nu} F^{\alpha\beta}\\ -\frac{\hbar^{2}}{8}\left[\partial_{\mu{\zeta}} \partial^{\mu} M_{\alpha\beta}\partial^{\nu} M^{*\alpha\beta}+ \partial_{\mu}(\partial^{\mu} M_{\alpha\beta}\partial^{\nu} M^{*\alpha\beta})\right], \end{array} $$
(57)

where the last three terms on the r.h.s are all spin dependent. Here the constant \(κ=-q\hbar /4c\). In spite of the immensely exaggerated complication of (57) vis a vis (11), the passage to the spin Fluidon quantum equation is quite straightforward, though highly tedious. These are the main steps and the final results:

  • a)  Following the derivation of the KG Fluidon, we, first find the spin generalized momentum that is a perfect four gradient (vorticity free). Such a combination is found to be

    $$ P^{\mu} + qA^{\mu}-\varsigma\partial^{\mu} \omega=\partial^{\mu} S $$
    (58)

    where ς and ω are functions of spin to be explicitly displayed later. The four curl of the effective momentum P μ yields

    $$ \partial^{\mu} P^{\nu}-\partial^{\nu} P^{\mu}=-q F^{\mu\nu}-\hbar{\Omega}^{\mu\nu} $$
    (59)

    where

    $$ {\Omega}^{\mu\nu}=-\partial^{\mu}\varsigma\partial^{\nu} \omega+\partial^{\nu}\varsigma\partial^{\mu} \omega $$
    (60)

    is a kind of spin specific vorticity or curvature, which (with a weight \(\hbar \)) accentuates the electromagnetic curvature F μν (with a weight q).

  • b)  then we introduce the following definitions: The wave function [56]

    $$ {\Psi}=\left( \begin{array}{c} \psi \\ -\psi \end{array} \right) $$
    (61)

    is a four component spinor with

    $$ \psi=\sqrt{g} e^{i S/\hbar}\varphi $$
    (62)

    thus the relativistic nature of the spin is represented through a spinor field. Here S is the eikonal defined by (58), g=n/f, as in the KG case, is the thermally modified number density, and

    $$ \varphi=\left( \begin{array}{c} \cos(\theta/2) e^{i\omega/2} \\ i \sin(\theta/2) e^{-i\omega/2} \end{array} \right) $$
    (63)

    is a two-component spinor leading to the normalizations

    $$ \psi^{\dag}\psi=g ,\qquad {\Psi}^{\dag}{\Psi}=2g $$
    (64)

The field 𝜃 is a parametric replacement of ς,

$$ \varsigma=\frac{\hbar}{2}\cos\theta $$
(65)

Using (61)-(65), we identify various intermediate variables in terms of the spinor φ

$$ \varsigma\partial^{\mu}\omega=-i\hbar\varphi^{\dag}\partial^{\mu}\varphi, $$
(66)
$$ M_{\alpha\beta}=\frac{\psi^{\dag}\sigma_{\alpha\beta} \psi}{g}=\varphi^{\dag}\sigma_{\alpha\beta} \varphi , $$
(67)
$$ \frac{1}{8}\partial_{\mu} M_{\alpha\beta}\partial^{\mu} M^{*\alpha\beta}=\partial_{\mu}\varphi^{\dag}\partial^{\mu}\varphi+(\varphi^{\dag}\partial_{\mu}\varphi)(\varphi^{\dag}\partial^{\mu}\varphi) , $$
(68)

and

$$ P^{\mu}=\partial^{\mu} S-qA^{\mu}-i\hbar\varphi^{\dag}\partial^{\mu}\varphi . $$
(69)

With the somewhat elaborate machinery, contained in (61)-(69), (57), and the accompanying continuity equation

$$ 0=\partial_{\mu}(gP^{\mu})= \partial_{\mu}\zeta (\partial^{\mu} S-qA^{\mu}+\varsigma\partial^{\mu} \omega)+\partial_{\mu}(\partial^{\mu} S-qA^{\mu}+\varsigma\partial^{\mu} \omega), $$
(70)

can be manipulated to, finally, derive the nonlinear Feynman-Gell-mann equation

$$ \left[D_{\mu} D^{\mu}+\frac{q\hbar}{2c}\sigma_{\alpha\beta}F^{\alpha\beta} +m^{2}+\lambda \bar{\Pi}({\Psi}^{\dag}{\Psi})\right]{\Psi}=0, $$
(71)

where

$$D^{\mu}=i\hbar\partial^{\mu}-q A^{\mu} $$

is the standard gauge derivative, and where the constant of integration was identified with the fermion mass square m 2. The nonlinear term \(\lambda \bar {\Pi }({\Psi }^{\dag }{\Psi })\), as before, is fluid specific. The spinor Fluidons, obeying the nonlinear (71), are, then, the quantum objects that embody many body interactions of a thermal fermion assembly. It is totally remarkable that their dynamics is relatively simple- almost like that of an elementary particle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, S.M., Asenjo, F.A. Hot Fluids and Nonlinear Quantum Mechanics. Int J Theor Phys 54, 1435–1449 (2015). https://doi.org/10.1007/s10773-014-2341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2341-0

Keywords

Navigation