Skip to main content
Log in

Anomalous Trajectories of H2 Solid Particles Observed Near a Sphere Oscillating in Superfluid Turbulent 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using a relatively low cost apparatus, consisting of a glass dewar and a digital camera capable of taking images at 240 frames per second we have observed trajectories of frozen H2 particles which follow the flow of liquid helium below 2 K, around a sphere oscillating at 38 Hz. In some of the images the motion is compatible with laminar flow, while at high amplitudes, where we can reach Reynolds numbers of a few thousand in the normal component, the flow is clearly turbulent. In some of the videos taken we find particles being suddenly accelerated to several times the velocity of the oscillating sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Tough, Superfluid turbulence, in Progress in Low Temperature Physics, vol. 8, ed. by D. Brewer (Elsevier, Amsterdam, 1982), pp. 133–219

    Google Scholar 

  2. R.J. Donnelly, C.E. Swanson, J. Fluid Mech. 173, 387 (1986)

    Article  ADS  Google Scholar 

  3. R.J. Donnelly, Physica B, Condens. Matter 329–333, 1 (2003). Proceedings of the 23rd International Conference on Low Temperature Physics

    Article  Google Scholar 

  4. W.F. Vinen, J. Low Temp. Phys. 145, 7 (2006). doi:10.1007/s10909-006-9240-6

    Article  ADS  Google Scholar 

  5. W.F. Vinen, Philos. Trans. R. Soc. Lond. 366, 2925 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. M. Paoletti, D. Lathrop, Annu. Rev. Condens. Matter Phys. 2, 213 (2011)

    Article  ADS  Google Scholar 

  7. M. Tsubota, Int. J. Emerg. Multidiscip. Fluid. Sci. 1, 229 (2009)

    Article  Google Scholar 

  8. W. Vinen, J. Low Temp. Phys. 161, 419 (2010)

    Article  ADS  Google Scholar 

  9. R. Donnelly, A. Karpetis, J. Niemela, K. Sreenivasan, W. Vinen, C. White, J. Low Temp. Phys. 126, 327 (2002)

    Article  ADS  Google Scholar 

  10. S.W. Van Sciver, C.F. Barenghi, Prog. Low Temp. Phys. 16, 247 (2009)

    Article  Google Scholar 

  11. M. Paoletti, M. Fisher, D. Lathrop, Physica D 239, 1367 (2010)

    Article  ADS  MATH  Google Scholar 

  12. D. Kivotides, J.C. Vassilicos, D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 86, 3080 (2001)

    Article  ADS  Google Scholar 

  13. G. Bewley, D. Lathrop, K. Sreenivasan, Nature 441, 588 (2006)

    Article  ADS  Google Scholar 

  14. C.F. Barenghi, D. Kivotides, Y.A. Sergeev, J. Low Temp. Phys. 148, 293 (2007)

    Article  ADS  Google Scholar 

  15. C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 80, 024514 (2009)

    Article  ADS  Google Scholar 

  16. G.P. Bewley, Flow visualization at low temperature. Cryogenics 49, 549 (2009)

    Article  ADS  Google Scholar 

  17. G. Bewley, K. Sreenivasan, D. Lathrop, Exp. Fluids 44, 887 (2008)

    Article  Google Scholar 

  18. T. Zhang, S.W. Van Sciver, Nat. Phys. 1, 36 (2005)

    Article  Google Scholar 

  19. M. La Mantia, T. Chagovets, M. Rotter, L. Skrbek, Rev. Sci. Instrum. 83, 055109 (2012)

    Article  ADS  Google Scholar 

  20. D.Y. Chung, P. Critchlow, Phys. Rev. Lett. 14, 892 (1965)

    Article  ADS  Google Scholar 

  21. T. Chagovets, S. Van Sciver, Phys. Fluids 23, 107102 (2011)

    Article  ADS  Google Scholar 

  22. T.A. Kitchens, W.A. Steyert, R.D. Taylor, P.P. Craig, Phys. Rev. Lett. 14, 942 (1965)

    Article  ADS  Google Scholar 

  23. L. Skrbek, W. Vinen, Prog. Low Temp. Phys. 16, 195 (2009)

    Article  Google Scholar 

  24. J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995)

    Article  ADS  Google Scholar 

  25. J. Luzuriaga, J. Low Temp. Phys. 108, 267 (1997)

    Article  ADS  Google Scholar 

  26. W. Schoepe, J. Low Temp. Phys. 150, 724 (2008)

    Article  ADS  Google Scholar 

  27. M. Blažková, D. Schmoranzer, L. Skrbek, W.F. Vinen, Phys. Rev. B 79, 054522 (2009)

    Article  ADS  Google Scholar 

  28. M. Blažková, M. Clovecko, E. Gao, L. Skrbek, P. Skyba, J. Low Temp. Phys. 148, 305 (2007). doi:10.1007/s10909-007-9389-7

    Article  ADS  Google Scholar 

  29. M. Blažková, T. Chagovets, M. Rotter, D. Schmoranzer, L. Skrbek, J. Low Temp. Phys. 150, 194 (2008)

    Article  ADS  Google Scholar 

  30. W.F. Vinen, L. Skrbek, H.A. Nichol, J. Low Temp. Phys. 135, 423 (2004)

    Article  ADS  Google Scholar 

  31. H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. Lett. 92, 244501 (2004)

    Article  ADS  Google Scholar 

  32. H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. E 70, 056307 (2004)

    Article  ADS  Google Scholar 

  33. D. Charalambous, L. Skrbek, P.C. Hendry, P.V.E. McClintock, W.F. Vinen, Phys. Rev. E 74 (2006). doi:10.1103/PhysRevE.74.036307

  34. V. Efimov, D. Garg, M. Giltrow, P. McClintock, L. Skrbek, W. Vinen, J. Low Temp. Phys. 158, 462 (2010)

    Article  ADS  Google Scholar 

  35. H. Yano, A. Handa, H. Nakagawa, M. Nakagawa, K. Obara, O. Ishikawa, T. Hata, J. Phys. Chem. Solids 66, 1501 (2005). Proceedings of the ISSP International Symposium (ISSP-9) on Quantum Condensed Systems

    Article  ADS  Google Scholar 

  36. H. Yano, N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 75, 012502 (2007)

    Article  ADS  Google Scholar 

  37. H. Yano, Y. Nago, R. Goto, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 81, 220507 (2010)

    Article  ADS  Google Scholar 

  38. E. Zemma, J. Luzuriaga, J. Low Temp. Phys. 166, 171 (2012)

    Article  ADS  Google Scholar 

  39. S. Douady, Y. Couder, M. Brachet, Phys. Rev. Lett. 67, 983 (1991)

    Article  ADS  Google Scholar 

  40. CASIO, Exilim EX ZR100. Digital camera

  41. R. Penney, T.K. Hunt, Phys. Rev. 169, 228 (1968)

    Article  ADS  Google Scholar 

  42. M.S. Paoletti, M.E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Phys. Rev. Lett. 101, 154501 (2008)

    Article  ADS  Google Scholar 

  43. L.D. Landau, E.M. Lifshitz, A Course in Theoretical Physics—Fluid Mechanics, vol. 6 (Pergamon, Elmsford, 1987)

    Google Scholar 

  44. J. Titon, O. Cadot, Phys. Rev. E 67, 027301 (2003)

    Article  ADS  Google Scholar 

  45. G.A. Voth, A. la Porta, A.M. Crawford, J. Alexander, E. Bodenschatz, J. Fluid Mech. 469, 121 (2002)

    Article  ADS  MATH  Google Scholar 

  46. F. Otto, E.K. Riegler, G.A. Voth, Phys. Fluids 20, 093304 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful correspondence from C. Barenghi, D. Lathrop, L. Skrbek, M. Tsubota and W. J. Vinen as well as fruitful discussions with H. Godfrin. This work was partially supported by grant PICT00-03-08937 from ANPCyT, Argentina and 06/C252 grant from U.N. Cuyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zemma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemma, E., Luzuriaga, J. Anomalous Trajectories of H2 Solid Particles Observed Near a Sphere Oscillating in Superfluid Turbulent 4He. J Low Temp Phys 173, 71–79 (2013). https://doi.org/10.1007/s10909-013-0881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0881-y

Keywords

Navigation