Skip to main content

Advertisement

Log in

Entropy Bottlenecks at T\(\,\rightarrow \,\)0 in Ce-Lattice and Related Compounds

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A number of specific heat \(C_\mathrm{m}\) anomalies are reported in Ce- and Yb-lattice compounds around 1 K which cannot be associated to usual phase transitions despite of their robust magnetic moments. Instead of a \(C_\mathrm{m}(T)\) jump, these anomalies show coincident morphology: (i) a significant tail in \(C_\mathrm{m}/T\), with similar power law decay above their maxima (\(T>T_\mathrm{m}\)), (ii) whereas a \(C_\mathrm{m}(T^2)\) dependence is observed below \(T_\mathrm{m}\). (iii) The comparison of their respective entropy gain \(S_\mathrm{m}(T)\) indicates that \(\approx 0.7R\)ln2 is condensed within the \(T>T_\mathrm{m}\) tail, in coincidence with an exemplary spin-ice compound. Such amount of entropy arises from a significant increase of the density of low energy excitations, reflected in a divergent \(C_\mathrm{m}(T>T_\mathrm{m})/T\) dependence. (iv) Many of their lattice structures present conditions for magnetic frustration. The origin of these anomalies can be attributed to an interplay between the divergent density of magnetic excitations at \(T\rightarrow 0\) and the limited amount of degrees of freedom: \(S_\mathrm{m}\) = \(R\)ln2 for a doublet-ground state. Due to this “entropy bottleneck,” the paramagnetic minimum of energy blurs out and the system slides into an alternative minimum through a continuous transition. A relevant observation in these very heavy fermion systems is the possible existence of an upper limit for \(C_\mathrm{m}/T_{\mathrm{Lim} T\rightarrow 0} ~\approx 7~\)J/mol K\(^2\) observed in four Yb- and Pr-based compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001)

    Article  ADS  Google Scholar 

  2. H.V. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  3. A.P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994)

    Article  ADS  Google Scholar 

  4. C. Lacroix, J. Phys. Soc. Jpn 79, 011008 (2010)

    Article  ADS  Google Scholar 

  5. T. Vojta, J. Schmalian, arXiv:cond-mat/0405609 (2004)

  6. S. Miyahara, K. Ueda, Phys. Rev. Lett. 82, 3710 (1999)

    Article  ADS  Google Scholar 

  7. T. Radu, Y. Tokiwa, R. Coldea, P. Gegenwart, Z. Tylczynski, F. Steglich, Sci. Technol. Adv. Mater. 8, 406 (2007)

    Article  Google Scholar 

  8. J.G. Sereni, Phil. Mag. 93, 409 (2013)

    Article  ADS  Google Scholar 

  9. M. Galli, E. Bauer, St Berger, Ch. Dusek, M. Della Mea, H. Michor, D. Kaczorowski, E.W. Sheidt, F. Mirabelli, Physica B 312–313, 489 (2002)

    Article  Google Scholar 

  10. U. Rauchschwalbe, U. Gottwick, U. Ahlheim, H.M. Mayer, F. Steglich, J. Less-Common Metals 111, 265 (1985)

    Article  Google Scholar 

  11. M. Giovannini, private communication

  12. O. Trovarelli, J.G. Sereni, G. Schmerber, J.P. Kappler, J. Magn. Magn. Mater. 140–145, 1211 (1994)

    Google Scholar 

  13. G. Nieva; PhD Thesis, Univ. Nac. de Cuyo, 1988 (unpublished).

  14. R. M-Reisener, Diplomarbeit, Tech. Hohschule Darmstdt, 1995 (unpublished).

  15. F. Kneidingers, PhD Thesis, Technical University Vienna, 2014 (unpublished).

  16. I. Curlik, M. Reiffers, J.G. Sereni, M. Giovannini, S. Gabani, arXiv:condmat.str/1403.6004v1 (2014)

  17. J.G. Sereni, J. Low Temp. Phys. 147, 179 (2007)

    Article  ADS  Google Scholar 

  18. D. Vollhardt, Phys. Rev. Lett. 78, 1307 (1997)

    Article  ADS  Google Scholar 

  19. A.P. Ramirez, A. Hayashi, R.J. Cava, R.R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999)

    Article  ADS  Google Scholar 

  20. S. Miyahara, K. Ueda, Phys. Rev. Lett. 82, 3701 (1999)

    Article  ADS  Google Scholar 

  21. P.H.E. Meijer, J.H. Colwell, B.P. Shah, Am. Jour. Phys. 41, 332 (1973)

    Article  ADS  Google Scholar 

  22. J.P. Abriata, D.E. Laughlin, Prog. Mater. Sci. 49, 367 (2004)

    Article  Google Scholar 

  23. Z. Fisk, P.C. Canfield, W.P. Beyermann, J.D. Thompson, M.F. Hundley, H.R. Ott, E. Felder, Phys. Rev. Lett. 67, 3310 (1991)

    Article  ADS  Google Scholar 

  24. M.S. Torikachvili, S. Jia, E.D. Mun, S.T. Hannahs, R.C. Black, W.K. Neils, D. Martien, S.L. Bud’ko, P.C. Canfield, PNAS 104, 9960 (2007)

    Article  ADS  Google Scholar 

  25. A. Yatskar, W.P. Beyermann, R. Movshovich, P.C. Canfield, Phys. Rev. Lett. 77, 3637 (1996)

    Article  ADS  Google Scholar 

  26. U. Killer, E.-W. Scheidt, W. Scherer, H. Michor, J. Sereni, Th Pruschke, Phys. Rev. Lett. 93, 216404 (2004)

    Article  ADS  Google Scholar 

  27. I. Zeiringer, J.G. Sereni, M. Gómez Berisso, K. Yubuta, P. Rogl, A. Grytsiv, E. Bauer, Mater. Res. Express 1, 016101 (2014)

    Article  ADS  Google Scholar 

  28. E.C. Stoner, Proc. Roy. Soc. (Lond) A154, 656 (1936)

    Article  ADS  Google Scholar 

  29. see for example: M. Abramowitz, I.A. Stugun, Handbook of Mathematical Functions (Dover Publisher, New York, 1970)

  30. see for example: A. Tari, The Specific Heat of Mater at Low Temperatures (Imperial College Press, London, 2003)

  31. see for example: J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993)

  32. J.G. Sereni, T.E. Huber, C.A. Luengo, Sol. State Commun. 29, 671 (1979)

    Article  ADS  Google Scholar 

  33. J.L. De jongh, A.R. Miedema, Adv. Phys. 23, 1 (1974)

    Article  ADS  Google Scholar 

  34. D. Garcia, Using Monte Carlo Simulation, private communication

  35. K. Kanoda, R. Kato, Annu. Rev. Condens. Matter Phys. 2, 167 (2011)

    Article  ADS  Google Scholar 

  36. M.S. Kim, M.C. Aronson, Phys. Rev. Lett. 110, 017201 (2013)

    Article  ADS  Google Scholar 

  37. M. Giovannini, H. Michor, E. Bauer, G. Hilscher, P. Rogl, T. Bonelli, F. Fauth, P. Fischer, T. Herrmannsdrfer, L. Keller, W. Sikora, A. Saccone, R. Ferro, Phys. Rev. B 61, 4044 (2000)

    Article  ADS  Google Scholar 

  38. H.V. Löhneysen, J. Magn. Magn. Mater. 200, 532 (1999)

    Article  ADS  Google Scholar 

  39. A.B. Pippard, Elements of Classical Thermodynamics (University Press, Cambridge, 1964)

    Google Scholar 

  40. R.B. Roof, A.C. Larson, D.T. Cromer, Acta Cryst. 14, 1084 (1961)

    Article  Google Scholar 

  41. G.E. Brodale, R.A. Fisher, N.E. Phillips, J. Flouquet, C. Marcenat, J. Magn. Magn. Mater. 54–57, 419 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to E. Bauer, I. Curlik, E.-W. Scheidt, and I. Zeiringer for allowing to access to original results, and M. Giovannini, M. Gómez Berisso, J.-P. Kappler, G. Nieva, P. Pedrazzini and G. Schmerber for experimental collaboration. This work was partially supported by project UNCuyo 06/C457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian G. Sereni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sereni, J.G. Entropy Bottlenecks at T\(\,\rightarrow \,\)0 in Ce-Lattice and Related Compounds. J Low Temp Phys 179, 126–137 (2015). https://doi.org/10.1007/s10909-014-1228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1228-z

Keywords

Navigation