Skip to main content
Log in

Entropy Constraints in the Ground State Formation of Magnetically Frustrated Systems

Role of Nernst Postulate in Real Systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A systematic modification of the entropy trajectory (\(S_\mathrm{m}(T)\)) is observed at very low temperature in magnetically frustrated systems as a consequence of the constraint (\(S_\mathrm{m}\ge 0\)) imposed by the Nernst postulate. The lack of magnetic order allows to explore and compare new thermodynamic properties by tracing the specific heat (\(C_\mathrm{m}\)) behavior down to the sub-Kelvin range. Some of the most relevant findings are: (i) a common \(C_\mathrm{m}/T|_{T\rightarrow 0} \approx 7\) J/mol K\(^2\) ‘plateau’ in at least five Yb-based very-heavy-fermions (VHF) compounds; (ii) quantitative and qualitative differences between VHF and standard non-Fermi-liquids; (iii) entropy bottlenecks governing the change of \(S_\mathrm{m}(T)\) trajectories in a continuous transition into alternative ground states. A comparative analysis of \(S_\mathrm{m}(T\rightarrow 0)\) dependencies is performed in compounds suitable for adiabatic demagnetization processes according to their \(\partial ^2 S_\mathrm{m}/\partial T^2\) derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Notice that CePd\(_{0.35}\)Rh\(_{0.65}\), as an example of QC behavior, is included to show that the change in the \(S_m(T)\) trajectory is due to thermodynamic constraints, independently of the cause of the lack of magnetic order

References

  1. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001)

    Article  ADS  Google Scholar 

  2. H. Löhneysen, A. Rosch, M. Vojta, P. Wöfle, Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  3. S.A. Kivelson, A. Muramatsu, New J. Phys. http://iopscience.iop.org/journal/1367-2630/page/. Focus on Quantum Spin Liquids

  4. D. Jang, T. Gruner, A. Steppke, K. Mistsumoto, C. Geibel, M. Brando, Nat. Commun. 6, 8680 (2015). https://doi.org/10.1038/ncomms9680

    Article  ADS  Google Scholar 

  5. S. Doniach, Physica B & C 91, 231 (1977)

    Article  ADS  Google Scholar 

  6. M. Lavagna, C. Lacroix, M. Cyrot, Phys. Lett. 90A, 210 (1982)

    Article  ADS  Google Scholar 

  7. M. Lavagna, C. Lacroix, M. Cyrot, J. Phys. F 13A, 1007 (1983)

    Article  ADS  Google Scholar 

  8. T. Vojta, Ann. Phys. 9, 403–440 (2000)

    Article  Google Scholar 

  9. J.G. Sereni, Handbook on the physics and chemistry of rare earths, in Low Temperature Specific Heat of Cerium Compounds, Ch. 98, vol. 15, ed. by K.A. Cschneidner Jr., L. Eyring (elsevier Science Publishers B. V., Amsterdam, 1991), p. 1

    Google Scholar 

  10. C. Gold, M. Uffinger, M. Herzinger, G. Eickerling, W. Scherer, H. Michor, E.-W. Scheidt, J. Alloys Compd. 523, 61 (2012)

    Article  Google Scholar 

  11. T. Gruner, D. Jang, A. Steppke, M. Brando, F. Ritter, C. Krellner, C. Geibel, J. Phys. Condens. Matter 26, 485002 (2014)

    Article  Google Scholar 

  12. I. Curlik, M. Giovannini, J.G. Sereni, M. Zapotokova, S. Gabani, M. Reiffers, Phys. Rev. B 90, 224409 (2014)

    Article  ADS  Google Scholar 

  13. A. Amato, D. Jaccard, J. Flouquet, E. Lapierre, J.L. Tholence, R.A. Fisher, S.E. Lacy, J.A. Olsen, N.E. Phillips, J. Low Temp. Phys. 68, 371 (1987)

    Article  ADS  Google Scholar 

  14. See Ref. [1] and G.R. Stewart, Rev. Mod. Phys. 78, 743 (2006)

  15. J.G. Sereni, C. Geibel, M. G-Berisso, P. Hellmann, O. Trovarelli, F. Steglich, Phys. B 230–232, 580 (1997)

    Article  Google Scholar 

  16. A.M. Strydom, University of Johannesburg, South Africa, Private Communication (2016)

  17. A. Yatskar, W.P. Beyermann, R. Movshovich, P.C. Canfield, Phys. Rev. Lett. 77, 3637 (1996)

    Article  ADS  Google Scholar 

  18. Z. Fisk, P.C. Canfield, W.P. Beyermann, J.D. Thompson, M.F. Hundley, H.R. Ott, E. Felder, M.B. Maple, M.A. Lopez de la Torre, P. Visani, C.L. Seamanet, Phys. Rev. Lett. 67, 3310 (1991)

    Article  ADS  Google Scholar 

  19. M.S. Torikachvili, S. Jia, E.D. Mun, S.T. Hannahs, R.C. Black, W.K. Neils, D. Martien, S.L. Budko, P.C. Canfield, PNAS 104, 9960 (2007)

    Article  ADS  Google Scholar 

  20. Y. Tokiwa, B. Piening, H.S. Jeevan, S.L. Budko, P.C. Canfield, P. Gegenwart, Sci. Adv. 2, e1600835 (2016)

    Article  ADS  Google Scholar 

  21. P. Carretta, R. Pasero, M. Giovannini, C. Baines, Phys. Rev. B 79, 020401(R) (2009)

    Article  ADS  Google Scholar 

  22. J.G. Sereni, in Magnetic Systems: Specific Heat, ed. by S. Hashmi (editor-in-chief), Materials science and materials engineering. (Elsevier, Oxford, 2016), p. 1–13; ISBN:978-0-12-803581-8

  23. M. Planck, Treatise on Thermodynamics (Dover Publications Inc, New York, 1926)

    Google Scholar 

  24. Unpublished results obtained from a single-crystal sample provided by S. Grigera, Universidad Nacional de La Plata, Argentina (2008)

  25. M. Galli, E. Bauer, St Berger, Ch. Dusek, M. Della Mea, H. Michor, D. Kaczorowski, E.W. Scheidt, F. Marabelli, Physica B 312–313, 489 (2002)

    Article  Google Scholar 

  26. Z. Hiroi, K. Matsuhira, M. Ogata, J. Phys. Soc. Jpn. 72, 304545 (2003)

    Google Scholar 

  27. J.G. Sereni, M. Giovannini, M. Gómez Berisso, F. Gastaldo, J. Phys. Condens. Matter 28, 475601 (2016)

    Article  ADS  Google Scholar 

  28. U. Rauchschwalbe, U. Gottwick, U. Ahlheim, H.M. Mayer, F. Steglich, J. Less Commun. Met. 111, 265 (1985)

    Article  Google Scholar 

  29. S. Hartmann, M. Deppe, N. Oeshler, N. Caroca Canales, J.G. Sereni, C. Geibel, J. Optoelectron. Adv. Mater. 10, 1607 (2008)

    Google Scholar 

  30. J.G. Sereni, T. Westerkamp, R. Küchler, N. Caroca-Canales, P. Gegenwart, C. Geibel, Phys. Rev. B 75, 024432 (2007)

    Article  ADS  Google Scholar 

  31. J.G. Sereni, J. Low Temp. Phys. 149, 179 (2007)

    Article  ADS  Google Scholar 

  32. A.J. Schofield, Contemp. Phys. 40, 95 (1999)

    Article  ADS  Google Scholar 

  33. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999)

    Article  ADS  Google Scholar 

  34. J.G. Sereni, M. Giovannini, M. G-Berisso, A. Saccone, Phys. Rev. B 83, 064419 (2011)

    Article  ADS  Google Scholar 

  35. A.B. Pippard, Elements of Classical Thermodynamics (Cambridge University Press, Cambridge, 1964)

    MATH  Google Scholar 

  36. E. Bauer, Adv. Phys. 40, 417 (1991)

    Article  ADS  Google Scholar 

  37. E.-W. Scheidt, D. Maurer, A. Weber, T. Götzfried, K. Heuser, S. Kehrein, R. Tidecks, Physica B 321, 133 (2002)

    Article  ADS  Google Scholar 

  38. Q. Si, Phys. Status Solidi B 247, 476 (2010)

    Article  ADS  Google Scholar 

  39. P. Coleman, A.H. Nevidomskyy, J. Low Temp. Phys. 161, 182–202 (2010)

    Article  ADS  Google Scholar 

  40. J.G. Sereni, J. Low Temp. Phys. 179, 126 (2015)

    Article  ADS  Google Scholar 

  41. K. Yoshimura, T. Kawabata, N. Sato, N. Tsujii, T. Terashima, C. Terakura, G. Kido, K. Kosuge, J. Alloys Compd. 317318, 465 (2001)

    Article  Google Scholar 

  42. T. Kong, V. Taufour, S.L. Budko, P.C. Canfield, Phys. Rev. B 95, 155103 (2017)

    Article  ADS  Google Scholar 

  43. T. Takeuchi, M. Ohya, S. Yoshiuchi, M. Matsushita, F. Honda, R. Settai, Y. Onuki, J. Phys. Conf. Ser. 273, 012059 (2011)

    Article  Google Scholar 

  44. S.R. Dunsiger, A.A. Aczel, C. Arguello, H. Dabkowska, A. Dabkowski, M.-H. Du, T. Goko, B. Javanparast, T. Lin, F.L. Ning, H.M.L. Noad, D.J. Singh, T.J. Williams, Y.J. Uemura, M.J.P. Gingras, G.M. Luke, Phys. Rev. Lett. 107, 207207 (2011)

    Article  ADS  Google Scholar 

  45. F. Kneidinge, Ph.D. Thesis, Technische Universität Wien, unpublished (2013)

  46. J.P. Abriata, D.E. Laughlin, Prog. Mater. Sci. 49, 367 (2004)

    Article  Google Scholar 

  47. J.G. Sereni, Philos. Mag. 93, 409 (2013)

    Article  ADS  Google Scholar 

  48. L. Peyker, C. Gold, W. Scherer, H. Michor, E.-W. Scheidt, J. Phys. Conf. Ser. 273, 012049 (2010)

    Article  Google Scholar 

  49. C. Krellner, S. Hartmann, A. Pikul, N. Oeschler, J.G. Donath, C. Geible, F. Steglich, J. Wosnitza, Phys. Rev. Lett. 102, 196402 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to I. Curlik, M. Giovannini, T. Gruner, M. Deppe, E. Bauer, H. Michor, M. Reiffers, E.-W. Scheidt, A. Strydom and I. Zeiringer for allowing to access to original experimental results. This work was partially supported by Projects: PIP-2014 Nr. 112-2013-0100576 of CONICET and SECyT 06/C520 of Univ. of Cuyo (Arg.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian G. Sereni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sereni, J.G. Entropy Constraints in the Ground State Formation of Magnetically Frustrated Systems. J Low Temp Phys 190, 1–19 (2018). https://doi.org/10.1007/s10909-017-1828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1828-5

Keywords

Navigation