Skip to main content
Log in

Low Temperature Thermoelectric Power of Ce(Pd\(_{1-x}\)Cu\(_x\))\(_2\)Si\(_2\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the thermoelectric power \(S(T)\) of the Ce(Pd\(_{1-x}\)Cu\(_x\))\(_2\)Si\(_2\) alloy for temperatures \(1.5\,\mathrm{K}<T<300\,\)K. We observe three characteristic features across the \(0<x<1\) substitution range: two positive maxima and a negative minimum, that are typical for Ce compounds that display, or lie close to, magnetism. Our analysis of the data shows that the high-\(T\) maximum is related to the Kondo effect on excited crystal-field levels, but that the low-\(T\) one cannot be simply associated with the Kondo scale, \(T_\mathrm{K}\). We speculate that disorder induced by alloying can be at the origin of this discrepancy and can also be responsible for the low \(S(T)\) measured at low temperatures in the \(0.2<x<0.8\) concentration range. We have extended electrical resistivity measurements on Ce(PdCu)Si\(_2\) (\(x=0.5\)) down to \(T\sim 40\) mK in applied fields as high as \(16\) T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Dilution refrigerator MCK50-400 from Leiden Cryogenics B.V., inside a \(18\,\)Tesla superconducting magnet from Oxford Instruments.

  2. The \(\rho (T)\) data for this La-alloy can be roughly described, in \(\upmu \Omega \,\)cm, by \(\rho (T)=126.2+3.4(T/60)^{2.4}\) below \(60\,\)K and \(\rho (T)=121.5+0.132 T\) above.

  3. Notice that \(\rho _{m}=\rho -\rho _\mathrm{ref}\) still has a very large contribution at low \(T\) of the order of \(350\,\upmu \Omega \,\)cm. An overestimation of \(\rho _{m}\), due e.g., microcracks in the sample, would lead to underestimate \(S_\mathrm{m}\).

References

  1. R.A. Steeman et al., Solid State Commun. 66, 103 (1988)

    Article  ADS  Google Scholar 

  2. N.D. Mathur et al., Nature 394, 39 (1998)

    Article  ADS  Google Scholar 

  3. F. Steglich et al., Phys. Rev. Lett. 43, 1892 (1979)

    Article  ADS  Google Scholar 

  4. R. Modler et al., Physica B 206–207, 586 (1995)

  5. Z. Mo, B.H. Grier, J. Phys.: Condens. Matter 1, 4947 (1989)

  6. M. Weiden et al., Physica B 223–224, 299 (1996)

  7. M. Gómez Berisso et al., Phys. Rev. B 58, 314 (1998)

    Article  ADS  Google Scholar 

  8. P. Link et al., Physica B 225, 207 (1996)

  9. S. Encina, P. Pedrazzini, An. Asoc. Fis. Argent. 24, 43 (2013). In spanish

  10. D.R. Zrudskyand, A.B. Showalter, Rev. Sci. Instrum. 44, 497 (1973)

    Article  ADS  Google Scholar 

  11. P. Pedrazzini et al., Physica B 404, 2898 (2009)

  12. D. Huo et al., J. Magn. Magn. Mater. 226–230, 202 (2001)

    Article  Google Scholar 

  13. D. Jaccard et al., J. Magn. Magn. Mater. 47–48, 23 (1985)

    Article  Google Scholar 

  14. A.K. Bhattacharjee, B. Coqblin, Phys. Rev. B 13, 3441 (1976)

    Article  ADS  Google Scholar 

  15. V. Zlatić, R. Monnier, Phys. Rev. B 71, 165109 (2005)

    Article  ADS  Google Scholar 

  16. S. Horn et al., Phys. Rev. B 23, 3171 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. N.H. van Dijk et al., Phys. Rev. B 61, 8922 (2005)

    Article  Google Scholar 

  18. V. Zlatić et al., Phys. Rev. B 68, 104432 (2003)

    Article  ADS  Google Scholar 

  19. K. Behnia et al., J. Phys.: Condens. Matter 16, 5187 (2004)

  20. S. Hartmann et al., Phys. Rev. Lett. 104, 096401 (2010)

    Article  ADS  Google Scholar 

  21. T. Kuwai et al., Physica B 378–380, 146 (2006)

  22. W. Franz et al., Z. Physica B 31, 7 (1978)

    Article  ADS  Google Scholar 

  23. E.V. Sampathkumaran et al., Solid State Commun. 71, 71 (1989)

    Article  ADS  Google Scholar 

  24. P. Pedrazzini et al., J. Low Temp. Phys. 135, 143 (2004)

    Article  ADS  Google Scholar 

  25. U. Rauchschwalbe et al., J. Magn. Magn. Matter. 63–64, 347 (1987)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to C. Geibel for providing the samples, to L. Tosi for his assistance in the low-\(T\) \(\rho (T)\) measurements and to J.G. Sereni for fruitful discussions. Work financially supported by PIP 112-2009-0100448 (CONICET) and PICT Bicentenario 2010-1060 (ANPCyT). S.E. holds a PhD scholarship from CONICET, while P.P. is a member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pedrazzini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Encina, S., Pedrazzini, P. Low Temperature Thermoelectric Power of Ce(Pd\(_{1-x}\)Cu\(_x\))\(_2\)Si\(_2\) . J Low Temp Phys 179, 21–27 (2015). https://doi.org/10.1007/s10909-014-1262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1262-x

Keywords

Navigation