Magnetic phase diagram of CuGe1xSixO3

M. Weiden, R. Hauptmann, W. Richter, C. Geibel, P. Hellmann, M. Köppen, F. Steglich, M. Fischer, P. Lemmens, G. Güntherodt, A. Krimmel, and G. Nieva
Phys. Rev. B 55, 15067 – Published 1 June 1997
PDFExport Citation

Abstract

The effect of Si doping on the magnetic properties of the spin-Peierls (SP) system CuGeO3 was found to differ strongly between polycrystals (PC's) and single crystals (SC"s). In SC's, the SP state is suppressed much more strongly, whereas the existence region of the antiferromagnetic (AF) state is enhanced. We investigated the origin of this difference by means of magnetic susceptibility, specific heat, thermal expansion, Raman scattering, elastic neutron scattering, and x-ray measurements on CuGe1xSixO3 samples prepared under different conditions. The partial oxygen pressure and the temperature during the synthesis were found to have a profound influence on the magnetic properties: preparation under reduced oxygen pressure leads to a stabilization of the AF state, whereas heating above the melting point results in a strong decrease of TSP in Si-doped samples. Therefore, both the AF stabilization and the TSP reduction observed in SC's are not an intrinsic effect of Si doping PC samples, which can be prepared at lower temperatures and more oxidizing conditions, reflect much better the intrinsic properties of CuGe1xSixO3. We were able to prepare PC samples up to 50 at. % Si and found a continuous decrease of the one-dimensional character of the magnetic properties without pronounced changes in the structure.

    DOI:https://doi.org/10.1103/PhysRevB.55.15067

    ©1997 American Physical Society

    Authors & Affiliations

    M. Weiden, R. Hauptmann, W. Richter, C. Geibel, P. Hellmann, M. Köppen, and F. Steglich

    • FG Technische Physik, TH Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany

    M. Fischer, P. Lemmens, and G. Güntherodt

    • 2. Physikalisches Institut, RWTH Aachen, Templergraben 55, 52062 Aachen, Germany

    A. Krimmel

    • Hahn-Meitner Institut, Berlin, Germany

    G. Nieva

    • Centro Atomico Bariloche, Bajas Temperaturas, San Carlos de Bariloche, Argentina

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 55, Iss. 22 — 1 June 1997

    Reuse & Permissions
    Access Options

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Physical Review B

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×