Skip to main content
Log in

Possible Visualization of a Superfluid Vortex Loop Attached to an Oscillating Beam

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Visualization using tracer particles is a relatively new tool available for the study of superfluid turbulence and flow, which is applied here to oscillating objects submerged in the liquid. We report observations of a structure seen in videos taken from outside a cryostat filled with superfluid helium at 2 K, which is possibly a vortex loop attached to an oscillator. The feature, which has the shape of an incomplete arch, is visualized due to the presence of solid \(\mathrm{H}_2\) tracer particles and is attached to a beam oscillating at 38 Hz in the liquid. It has been recorded in videos taken at 240 frames per second, fast enough to take \({\sim }6\) images per period. This makes it possible to follow the structure, and to see that it is not rigid. It moves with respect to the oscillator, and its displacement is in phase with the velocity of the moving beam. Analyzing the motion, we come to the conclusion that we may be observing a superfluid vortex attached to the beam and decorated by the hydrogen particles. An alternative model, considering a solid hydrogen filament, has also been analyzed, but the observed phase between the movement of the beam and the filamentary structure is better explained by the superfluid vortex hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.P. Feynman, Rev. Mod. Phys. 29, 205–212 (1957)

    Article  ADS  Google Scholar 

  2. L. Onsager, Nuovo Cimento 6, 249–250 (1949)

    Article  MathSciNet  Google Scholar 

  3. W. Vinen, Proc. R. Soc. Lond. A 260, 218–236 (1961)

    Article  ADS  Google Scholar 

  4. G. Bewley, D. Lathrop, K. Sreenivasan, Nature 441, 588–588 (2006)

    Article  ADS  Google Scholar 

  5. G. Bewley, Cryogenics 49, 549–553 (2009)

    Article  ADS  Google Scholar 

  6. G. Bewley, K. Sreenivasan, D. Lathrop, Exp. Fluids 44, 887–896 (2008)

    Article  Google Scholar 

  7. E. Fonda, D.P. Meichle, N.T. Ouellette, S. Hormoz, D.P. Lathrop, Proc. Natl. Acad. Sci. 111, 4707–4710 (2014)

    Article  ADS  Google Scholar 

  8. M. La Mantia, L. Skrbek, EPL (Europhys. Lett.) 105, 46002 (2014)

    Article  ADS  Google Scholar 

  9. M. La Mantia, D. Duda, M. Rotter, L. Skrbek, Proc. IUTAM 9, 79–85 (2013)

    Article  Google Scholar 

  10. M. Paoletti, M. Fisher, K. Sreenivasan, D. Lathrop, Phys. Rev. Lett. 101, 154501 (2008)

    Article  ADS  Google Scholar 

  11. W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci. 111, 4653–4658 (2014)

    Article  ADS  Google Scholar 

  12. E. Zemma, J. Luzuriaga, J. Low Temp. Phys. 173, 71–79 (2013)

    Article  ADS  Google Scholar 

  13. W. Vinen, J. Low Temp. Phys. 161, 419–444 (2010)

    Article  ADS  Google Scholar 

  14. W.F. Vinen, L. Skrbek, Proc. Natl. Acad. Sci. 111, 4699–4706 (2014)

    Article  ADS  Google Scholar 

  15. R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M. Tsubota, T. Hata, Phys. Rev. Lett. 100(4), 045301 (2008)

    Article  ADS  Google Scholar 

  16. R. Hänninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75(6), 064502 (2007)

    Article  ADS  Google Scholar 

  17. S. Godfrey, D. Samuels, J. Low Temp. Phys. 125, 69–85 (2001)

    Article  ADS  Google Scholar 

  18. S.P. Godfrey, D.C. Samuels, Phys. Rev. B 61, 4190 (2000)

    Article  ADS  Google Scholar 

  19. R. Penney, T.K. Hunt, Phys. Rev. 169(1), 228–228 (1968)

    Article  ADS  Google Scholar 

  20. K. Schwarz, Phys. Rev. B 31, 5782 (1985)

    Article  ADS  Google Scholar 

  21. E.B. Gordon, R. Nishida, R. Nomura, Y. Okuda, JETP Lett. 85, 581–584 (2007)

    Article  Google Scholar 

  22. E. Gordon, Y. Okuda, Low Temp. Phys. 35, 209–213 (2009)

    Article  ADS  Google Scholar 

  23. K. Schwarz, Phys. Rev. B 38, 2398 (1988)

    Article  ADS  Google Scholar 

  24. G.P. Bewley, K.R. Sreenivasan, J. Low Temp. Phys. 156, 84–94 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by 06/C432 Grant from U.N. Cuyo and CONICET-Czech Academy of Sciences Scientific Cooperation agreement. J. L. would like to thank S. N. Fisher for a helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zemma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 486 KB)

Supplementary material 2 (mpg 240 KB)

Supplementary material 3 (mpg 260 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemma, E., Tsubota, M. & Luzuriaga, J. Possible Visualization of a Superfluid Vortex Loop Attached to an Oscillating Beam. J Low Temp Phys 179, 310–319 (2015). https://doi.org/10.1007/s10909-015-1282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1282-1

Keywords

Navigation