Skip to main content
Log in

Role of Ce sublattices in the thermal and magnetic properties of Ce7 X 3 (X=Ni, Ru, Rh, Ir, Pd, and Pt) compounds

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The role of the Ce sublattices in the thermal and magnetic properties of the Ce7 X 3 (X=Ni, Ru, Rh, Ir, Pd, and Pt) family of compounds is studied by means of ac and dc magnetic susceptibility, magnetization and mainly specific-heat experiments in applied magnetic field. The experimental data show that in these compounds there is coexistence of magnetic order, heavyfermion and intermediate-valence behavior, which is interpreted in terms of the contribution of the three different sublattices present in the crystalline structure of Th7Fe3-type (denoted by 1CeI, 3CeII, and 3CeIII). From the available volume of the CeIII atoms in their crystallographic environment it is found that sublattice CeIII has an intermediate-valence behavior, whereas from entropic considerations sublattices CeI and CeII are identified as responsible for the magnetic order or heavy-fermion behavior, depending on the Ce-ligand electronic structure. This systematics evidences a clear correlation between the thermal and magnetic properties of these compounds and the position of the respective Ce-ligands in the periodic table, through the particular sensitivity of Ce to the environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. G. Sereni,Physica B 215, 273 (1995).

    Article  ADS  Google Scholar 

  2. C. D. Bredl, F. Steglich, and K. D. Schotte,Z. Phys. B 29, 327 (1978).

    Article  Google Scholar 

  3. See for instance, F. Steglich, C. Geibel, R. Modler, M. Lang, P. Hellmann, and P. Gegenwart,J. Low Temp. Phys. 99, 267 (1995).

    Article  Google Scholar 

  4. G. Givord, P. Lejay, E. Resouche, J. Schweizer, and A. Stunault,Physica B 156 & 157, 805 (1989).

    Article  Google Scholar 

  5. J. G. Sereni, inHandbook on the Physics and Chemistry of the Rare Earths, Vol. 15, K. A. Gschneidner, Jr., and L. Eyring (eds.), Elsevier, Amsterdam (1991), p. 1.

    Google Scholar 

  6. J. G. Sereni, G. L. Nieva, J. P. Kappler, and P. Haen,J. Phys. (Paris) 1, 1499 (1991).

    Google Scholar 

  7. J. G. Sereni, O. Trovarelli, G. Schmerber, and J. P. Kappler,J. Magn. Magn. Mater. 108, 183 (1992).

    Article  ADS  Google Scholar 

  8. J. G. Sereni, O. Trovarelli, J. P. Kappler, C. Paschke, T. Trappmann and H. v. Löhneysen,Physica B 199 & 200, 567 (1994).

    Article  Google Scholar 

  9. J. P. Kappler, G. Schmerber, O. Trovarelli, and J. G. Sereni,Z. Phys. B — Condensed Matter 86, 253 (1992).

    Article  Google Scholar 

  10. D. C. Koskenmaki and K. A. Gschneidner, Jr., inHandbook on the Physics and Chemistry of the Rare Earths, Vol. 1, K. A. Gschneidner, Jr., and L. Eyring (eds.), North Holland, Amsterdam (1978), p. 337.

    Google Scholar 

  11. H. H. Hill, inPlutonium and other Actinides, W. M. Miner (ed.), AIME, New York (1970), p. 2.

    Google Scholar 

  12. O. Trovarelli, P. Stickar, J. G. Sereni, G. Schmerber, and J. P. Kappler,Solid State Commun. 89, 421 (1994).

    Article  Google Scholar 

  13. O. Trovarelli, J. G. Sereni, G. Schmerber, and J. P. Kappler,Physica B 206&207, 243 (1995).

    Article  Google Scholar 

  14. See for example,Binary Alloy Phase Diagrams, T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (eds.), ASM International, Materials Park, Ohio (1991).

    Google Scholar 

  15. R. B. Roof, Jr., A. C. Larson, and D. T. Cromer,Acta Cryst. 14, 1084 (1961).

    Article  Google Scholar 

  16. J. L. C. Daams, P. Villards, and J. H. N. van Vucht,Atlas of Crystal Structures Types for Intermetallic Phases, ASM International, Materials Park, Ohio (1991).

    Google Scholar 

  17. J. V. Florio, N. C. Baezinger, and R. E. Rundle,Acta Cryst. 9, 367 (1956).

    Article  Google Scholar 

  18. G. L. Olcese,J. Less-Common Metals 33, 71 (1973).

    Article  Google Scholar 

  19. G. O. Brunner and D. Schwarzenbach,Z. Kristallogr. 133, 127 (1971); J. L. C. Daams and P. Villars,J. Alloys Comp. 215, 1 (1994).

    Google Scholar 

  20. F. Kissell, T. Tsushida, and W. E. Wallace,J. Chem. Phys. 44, 4651 (1966).

    Article  Google Scholar 

  21. D. Ginoux and J. C. Gomez-Sal,J. Appl. Phys. 57, 3125 (1985).

    Article  ADS  Google Scholar 

  22. M. A. Fremy, Ph.D. thesis, University of Grenoble, France, unpublished (1985).

  23. K. Umeo, K. Ishii, and H. Kadomatsu,Solid State Comm. 90, 321 (1994); K. Umeo, K. Ishii, and H. Kadomatsu,J. Magn. Magn. Mater. 148, 409 (1995).

    Article  Google Scholar 

  24. U. Gottwick, K. Gloos, S. Horn, F. Steglich, and N. Grewe,J. Magn. Magn. Mater. 47 & 48, 536 (1985).

    Article  Google Scholar 

  25. E. Burgo, A. Chelkowski, and H. R. Kirchmayr, inLandolt-Börnstein Series, Vol. 19 d2, H. P. J. Wijn (ed.), Springer-Verlag (1990).

  26. J. P. Kappler, M. J. Besnus, P. Lehmann, A. Meyer, and J. G. Sereni,J. Less-Common Metals 111, 261 (1985).

    Article  Google Scholar 

  27. J. P. Kappler, P. Lehmann, G. Schmerber, G. Nieva, and J. G. Sereni,J. de Physique 49, C8–721 (1988).

    Google Scholar 

  28. See, e.g., N. Grewe and F. Steglich, inHandbook on the Physics and Chemistry of the Rare Earths, Vol. 14, K. A. Gschneidner, Jr., and L. Eyring (eds.), North-Holland, Amsterdam (1991), p. 343.

    Google Scholar 

  29. V. T. Rajan,Phys. Rev. Lett. 51, 309 (1983).

    Article  ADS  Google Scholar 

  30. H.-U. Desgranges and K. D. Schotte,Phys. Lett. A 91, 240 (1982).

    Article  ADS  Google Scholar 

  31. See for example, H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford (1971), Chap. 6.

    Google Scholar 

  32. O. Trovarelli, Ph.D. thesis, Instituto Balseiro, Universidad Nacional de Cuyo, Argentina, unpublished (1996).

  33. See for example, J. A. Mydosh,Spin Glasses: An Experimental Introduction Taylor & Francis, London (1993), Chap. 3.

    Google Scholar 

  34. N. B. Brandt and V. V. Moshchalkov,Adv. Phys. 33, 373 (1984); H. R. Krishna-Murthy, J. W. Wilkins, and K. G. Wilson,Phys. Rev. B 21, 1003 (1980); N. Andrei, K. Furuya, and J. H. Lowenstein,Rev. Mod. Phys. 55, 331 (1983).

    Article  ADS  Google Scholar 

  35. J. G. Sereni, C. Geibel, M. Gómez Berisso, P. Hellmann, O. Trovarelli, and F. Steglich, inProceedings of the International Conference on Strongly Correlated Electron Systems (SCES’96), Zurich. To appear in Physica B.

  36. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii,Spin Waves, North Holland. Amsterdam (1968), Chap. 6.

    Google Scholar 

  37. D. Gignoux, F. Givord, R. Lemaire, and F. Tasset,J. Less-Common Metals 94, 1 (1983).

    Article  Google Scholar 

  38. S. K. Dhar, S. K. Malik, R. Vijayaraghavan,J. Phys. C 14, L3121 (1981); K. N. Yang, M. S. Torikachvili, M. B. Maple, and H. C. Ku,J. Low Temp. Phys. 56, 601 (1984).

    Google Scholar 

  39. L. E. De Long, J. G. Huber, and K. S. Bedell,J. Magn. Magn. Mater. 99 171 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trovarelli, O., Sereni, J.G. & Kappler, J.P. Role of Ce sublattices in the thermal and magnetic properties of Ce7 X 3 (X=Ni, Ru, Rh, Ir, Pd, and Pt) compounds. J Low Temp Phys 108, 53–85 (1997). https://doi.org/10.1007/BF02396816

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396816

Keywords

Navigation