Skip to main content
Log in

Turbulent Flow Around an Oscillating Body in Superfluid Helium: Dissipation Characteristics of the Nonlinear Regime

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By examining the resonance curves of an oscillator submerged in superfluid liquid helium, it is found that their shape is affected by two distinct dissipation regimes when the amplitude is large enough to generate turbulence in the liquid. In a resonance curve, the central part close to resonance, may be in a turbulent regime, but the response is of much lower amplitude away from the resonance frequency, so that the oscillation can still be in the linear regime for frequencies not exactly at resonance. This introduces an ambiguity in estimating the inverse quality factor Q −1 of the oscillator. By analyzing experimental data we consider a way of matching the two ways of estimating Q −1 and use the information to evaluate the frictional force as a function of velocity in a silicon paddle oscillator generating turbulence in the superfluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995)

    Article  ADS  Google Scholar 

  2. J. Luzuriaga, J. Low Temp. Phys. 108, 267 (1997)

    Article  ADS  Google Scholar 

  3. W. Schoepe, J. Low Temp. Phys. 150, 724 (2008)

    Article  ADS  Google Scholar 

  4. M. Blažková, D. Schmoranzer, L. Skrbek, W.F. Vinen, Phys. Rev. B 79, 054522 (2009)

    Article  ADS  Google Scholar 

  5. M. Blažková, M. Clovecko, E. Gažo, L. Skrbek, P. Skyba, J. Low Temp. Phys. 148, 305 (2007)

    Article  ADS  Google Scholar 

  6. M. Blažková, T. Chagovets, M. Rotter, D. Schmoranzer, L. Skrbek, J. Low Temp. Phys. 150, 194 (2008)

    Article  ADS  Google Scholar 

  7. W.F. Vinen, L. Skrbek, H.A. Nichol, J. Low Temp. Phys. 135(5–6), 423 (2004)

    Article  ADS  Google Scholar 

  8. H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. Lett. 92, 244501 (2004)

    Article  ADS  Google Scholar 

  9. H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. E 70, 056307 (2004)

    Article  ADS  Google Scholar 

  10. D. Charalambous, L. Skrbek, P.C. Hendry, P.V.E. McClintock, W.F. Vinen, Phys. Rev. E 74, 036307 (2006)

    Article  ADS  Google Scholar 

  11. V. Efimov, D. Garg, M. Giltrow, P. McClintock, L. Skrbek, W. Vinen, J. Low Temp. Phys. 158, 462 (2010)

    Article  ADS  Google Scholar 

  12. H. Yano, A. Handa, H. Nakagawa, M. Nakagawa, K. Obara, O. Ishikawa, T. Hata, J. Phys. Chem. Solids 66(8–9), 1501 (2005)

    Article  ADS  Google Scholar 

  13. H. Yano, N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 75, 012502 (2007)

    Article  ADS  Google Scholar 

  14. H. Yano, Y. Nago, R. Goto, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 81, 220507 (2010)

    Article  ADS  Google Scholar 

  15. E. Zemma, J. Luzuriaga, J. Low Temp. Phys. 166, 171 (2012)

    Article  ADS  Google Scholar 

  16. J. Tough, Superfluid turbulence, in Progress in Low Temperature Physics, vol. 8, ed. by D. Brewer (Elsevier, Amsterdam, 1982), pp. 133–219

    Google Scholar 

  17. R.J. Donnelly, C.E. Swanson, J. Fluid Mech. 173, 387 (1986)

    Article  ADS  Google Scholar 

  18. R.J. Donnelly, Physica B, Condens. Matter 329, 1 (2003)

    Article  ADS  Google Scholar 

  19. W.F. Vinen, J. Low Temp. Phys. 145, 7 (2006)

    Article  ADS  Google Scholar 

  20. W.F. Vinen, Philos. Trans. R. Soc. 366, 2925 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A.B. Pippard, The Physics of Vibration. Vol. 1: The Simple Classical Vibrator (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  22. W. Weaver, S. Timoshenko, D. Young, Vibration Problems in Engineering (Wiley-Interscience, New York, 1990)

    Google Scholar 

  23. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  24. E. Collin, Y.M. Bunkov, H. Godfrin, Phys. Rev. B 82, 235416 (2010)

    Article  ADS  Google Scholar 

  25. D.G. Fincham, P.C. Wraight, J. Phys. A, Math. Gen. 5(2), 248 (1972)

    Article  ADS  MATH  Google Scholar 

  26. R. Hänninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75, 064502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Badía Majós for fruitful discussions. This work was partially supported by grant PICT00-03-08937 from ANPCyT, Argentina and 06/C252 grant from U.N. Cuyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zemma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemma, E., Luzuriaga, J. Turbulent Flow Around an Oscillating Body in Superfluid Helium: Dissipation Characteristics of the Nonlinear Regime. J Low Temp Phys 172, 256–265 (2013). https://doi.org/10.1007/s10909-013-0862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0862-1

Keywords

Navigation