Skip to main content

Accounting More Precisely for Peat and Other Soil Carbon Resources

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

In the context of “recarbonization”, it is important to know where the soil C stocks are located and how much of these are prone to emission to the atmosphere. While it may appear to be a trivial question considering available global estimates and maps, yet there is a strong need to emphasize that erroneous estimates are made in assessing the global soil C stocks. Without doubt, peatlands hold the single most important soil C stock at the global scale, and these soils are mostly located in the northern latitudes between 50°N and 70°N. However, there are additional wetlands or other ecosystems which also hold potentially relevant amounts of soil C stocks. From the soil science perspective, it implies that there are other hydromorphic soils, besides Histosols and potentially other soil types, also containing relevant amounts of soil C stock. Differences in scientific approaches, which include terminology, definitions, depth to which soil C is considered, and bulk density, etc., lead to different estimates of soil C stocks. Recent estimates indicate that peatlands cover only 3% of the global land surface but contain 40% of the soil C stocks to 1-m depth. Consequently, only small differences in the estimate of the land coverage lead to great differences in the soil C stock estimates. Typically peatlands, wetlands and other ecosystems rich in soil C, cover only small parts of the landscapes, and yet are not easily accounted for by any inventory or mapping attempts. With estimates presented in this chapter, hydromorphic soils, aside Histosols, add 10% soil C stock to the estimates of peatland’s Histosols. Additionally, non hydromorphic Podzols add another 10% to the soil C stock. Above all, soils from the steppe biome must also be considered. The soil C stock of Cryosols (frozen soil C not separated from peatlands) contain as much as 1,500 Pg C, which is as much C as the total stock estimated in world soils to 1-m depth. Thus, coordinated and substantial efforts are needed to improve the mapping of ecosystems, particularly of those which are rich in soil C stocks. One option is to improve remote sensing techniques for wetlands. These efforts must be undertaken quickly because soil C stocks are being depleted not only by the positive feedback with the climate system but also directly by land use change. The conversion of peatlands to agricultural and forestry uses is not sustainable because of the depletion C stocks, and especially not for conversion of peatlands for “biofuels” production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

carbon

DOC:

dissolved organic C

GCC:

global carbon cycle

GLS:

Global land cover

GLCC:

Global land cover characteristics

GHGs:

greenhouse gases

LCCS:

land cover classification system

Mha:

million ha

OM:

organic matter

SOC:

soil organic carbon

SOM:

soil organic matter

GWP:

global warming potential

References

  • AG-Boden (2005) Bodenkundliche Kartieranleitung, 5th edn. Bodenkundliche Kartieranleitung, Hannover

    Google Scholar 

  • Arino OD, Gross F, Ranera L et al (2008) GlobCover: ESA service for global land cover from MERIS. 2007 IEEE Int Geosci Remote Sens Symp IGARSS:2412–2415

    Google Scholar 

  • Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J Ecol 74:755–774

    Article  CAS  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  CAS  Google Scholar 

  • Augustin J, Chojnicki B (2008) Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach der Wiedervernässung von degradiertem Niedermoorgrünland. In: Gelbrecht J, Zak D, Augustin (eds) Phosphor- und Kohlenstoff-Dynamik in wiedervernässtem Mooren des Peenetals in Mecklenburg-Vorpommern. Berichte des IGB 26/2008. Berlin, Germany

    Google Scholar 

  • Bartholomé E, Belward AS (2000) A new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Blackford J, Chambers FM (1993) Determining the degree of peat decomposition in peat-based palaeoclimatic studies. Int Peat J 5:7–24

    CAS  Google Scholar 

  • Bridgeham SD, Pastor J, Dewey B et al (2008) Rapid carbon response of peatlands to climate change. Ecology 89:3041–3048

    Article  Google Scholar 

  • Caseldine CJ, Baker A, Charman DJ et al (2000) A comparative study of optical properties of NaOH peat extracts: implications for humification studies. Holocene 10:649–658

    Article  Google Scholar 

  • Charman D (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–654

    Article  Google Scholar 

  • Collins ME, Kuehl RJ (2001) Organic matter accumulation and organic soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils. Genesis, hydrology, landscape and classification. Lewis Publishers, Boca Raton/London/New York/Washington, pp 137–162

    Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F et al (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  • D’Angelo EM, Reddy KR (1999) Regulators of heterothrophic microbial potentials in wetland soils. Soil Biol Biochem 31:815–830

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Di Gregorio A (2005) Land cover classification system, classification concepts and user manual for software (version 2). Environment and natural resources service series no. 8. FAO, Rome

    Google Scholar 

  • Elberling B, Christiansen HH, Hansen BU (2010) High nitrous oxide production from thawing permafrost. Nat Geosci 3:332–335

    Article  CAS  Google Scholar 

  • FAO/UNESCO (1995, 2003) The digitized soil map of the world and derived soil properties (version 3.5). FAO land and water digital media series 1. FAO, Rome

    Google Scholar 

  • Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Fiedler S, Holl BS, Jungkunst HF (2005) Methane budget of a Black Forest spruce ecosystem considering soil pattern. Biogeochemistry 76:1–20

    Article  CAS  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF et al (2002) Global land cover mapping from MODIS, algorithms and early results. Remote Sens Environ 83:287–302

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate-carbon cycle feedback analysis: results from the C(4)MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Fritz S, McCallum I, Schill C et al (2009) The use of crowdsourcing to improve global land cover. Remote Sens 1(3):345–354

    Article  Google Scholar 

  • Frolking S, Li C, Braswell R et al (2004) Short- and long-term greenhouse gas and radiative forcing impacts of changing water management in Asian rice paddies. Glob Change Biol 10:1180–1196

    Article  Google Scholar 

  • Frolking S, Talbot J, Jones MC et al (2011) Peatlands in the Earth’s 21st century climate system. Environ Rev 19:371–396

    Article  CAS  Google Scholar 

  • Glatzel S (2011) Biogeochemische Stoffkreisläufe: Kohlenstoff- und Stickstoffkreislauf. In: Gebhardt H et al (Hrsg) Geographie. 2. Aufl. Spektrum, Heidelberg, pp S. 624–628

    Google Scholar 

  • Glatzel S, Koebsch F, Beetz S et al (2011) Maßnahmen zur Minderung der Treibhausgasfreisetzung aus Mooren im Mittleren Mecklenburg. Telma 4:85–106

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1(2):182–195

    Article  Google Scholar 

  • Hansen MC, Townshend JRG, DeFries RS et al (2005) Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int J Remote Sens 26:4359–4380

    Article  Google Scholar 

  • Harris ESJ (2008) Ethnobryology: traditional uses and folk classification of bryophytes. The Bryologist 111(2):169–217

    Article  Google Scholar 

  • Heimann M (2011) Enigma of the recent methane budget. Nature 476:157–158

    Article  PubMed  CAS  Google Scholar 

  • Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25. doi:10.1029/2009GB003718

  • Herold M, Mayaux P, Woodcock CE et al (2008) Some challenges in global land cover mapping, an assessment of agreement and accuracy in existing 1 km datasets. Earth observations for terrestrial biodiversity and ecosystems special issue. Remote Sens Environ 112(5):2538–2556

    Article  Google Scholar 

  • Ilnicki P (2002) Peatlands and peat. Wydawnictwo AR, Pozman

    Google Scholar 

  • IPS (2011) Global peat resources. www.peatsociety.org/peatlands-and-peat/global-peat-resources-country. Accessed on 29 Dec 2011

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands. Intl Mire Conserv Group, Intl Peat Soc, Vapaudenkatu

    Google Scholar 

  • Jungkunst HF (2010) Soil science: Arctic thaw. Nat Geosci 3:306–307

    Article  CAS  Google Scholar 

  • Maltby E, Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere 27(6):999–1023

    Article  CAS  Google Scholar 

  • Jungkunst HF, Fiedler S (2007) Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Glob Change Biol 13:2668–2683

    Article  Google Scholar 

  • Jungkunst HF, Flessa H, Scherber C et al (2008) Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol Biochem 40:2047–2054

    Article  CAS  Google Scholar 

  • Kai FM, Tyler SC, Randerson JT et al (2011) Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476:194–197

    Article  PubMed  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao ZH et al (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Krankina ON, Pflugmacher D, Friedl M et al (2008) Meeting the challenge of mapping peatlands with remotely sensed data. Biogeosciences 5:1809–1820

    Article  Google Scholar 

  • Lal R (2002) Soil carbon dynamics in cropland and rangeland. Environ Pollut 116:353–362

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Lane J, Minkkinen K, Trettin C (2009) Direct human impacts on the peatland carbon sink. Carbon cycling in northern peatlands. Geophys Mono Ser 184:71–78

    Article  Google Scholar 

  • Li JH, Chen WJ (2005) A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. Int J Remote Sens 26:5051–5069

    Article  Google Scholar 

  • Li WH, Dickinson RE, Fu R et al (2007) Future precipitation changes and their implications for tropical peatlands. Geophys Res Lett 34:L08701. doi:10.1029/2006GL029022

  • Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C et al (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Loveland TR, Reed BC, Brown JF et al (2000) Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • MacDonald GM, Beilman DW, Kremenetski KV et al (2006) Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:285–288

    Article  PubMed  CAS  Google Scholar 

  • Marushchack ME, Pitkämäki A, Koponen H et al (2011) Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob Change Biol 17:2601–2614

    Article  Google Scholar 

  • Mikhailova EA, Post CJ (2006) Organic carbon stocks in the Russian Chernozems. Eur J Soil Sci 57:330–336

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, Hoboken

    Google Scholar 

  • Mitsch WJ, Gosselink JG, Anderson CJ et al (2009) Wetland ecosystems. Wiley, Hoboken

    Google Scholar 

  • National Wetland Working Group (1997) The Canadian wetland classification system, 2nd edn. University of Waterloo, Waterloo

    Google Scholar 

  • Nilsson M, Mikkela C, Sundh I et al (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. J Geophys Res Atmos 106:20847–20860

    Article  CAS  Google Scholar 

  • Okruzko H (1996) Agricultural use of peatlands. In: Lappalainen E (ed) Global peat resources. Intl Peat Society, Jyska

    Google Scholar 

  • Page SE, Siegert F, Rieley JO et al (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  PubMed  CAS  Google Scholar 

  • Page SE, Wüst RAJ, Weiss D, Rieley JO et al (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quaternary Sci 19:625–635

    Article  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818

    Article  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  • Pflugmacher D, Krankina ON, Cohen WB (2007) Satellite based peatland mapping, potential of the MODIS sensor, global planet. Change 56:248–257

    Google Scholar 

  • Poulter B, Christensen NL, Halpin PN (2006) Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. J Geophys Res Atmos 111. doi:10.1029/2005JD006455

  • Prechtel A, von Luetzow M, Schneider BU et al (2009) Organic carbon in soils of Germany: status quo and the need for new data to evaluate potentials and trends of soil organic carbon sequestration. J Plant Nutr Soil Sci 172:601–614

    Article  CAS  Google Scholar 

  • Primavesi A (1984). Manejo ecológico del suelo. La agricultura en regiones tropicales. 5ta Edición. El Ateneo, Rio de Janeiro, 499 pp

    Google Scholar 

  • Ramsar Information Bureau (1971). http://www.ramsar.org/cda/en/ramsar-documents-texts-convention-on-20708/main/ramsar/1-31-38%5E20708_4000_0__

  • Repo ME, Susiluoto S, Lind SE et al (2009) Large N2O emissions from cryoturbated peat soils in tundra. Nat Geosci 2:189–192

    Article  CAS  Google Scholar 

  • Richardson JL, Arndt JL, Montgomery JA (2001) Hydrology of wetland and related soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils. Genesis, hydrology, landscape and classification. Lewis Publishers, Boca Raton/London/New York/Washington, DC

    Google Scholar 

  • Roman-Cuesta RM, Salinas N, Asbjornsen H et al (2011) Implications of fires on carbon budgets in Andean cloud montane forest: the importance of peat soils and tree resprouting. Forest Ecol Manage 261:1987–1997

    Article  Google Scholar 

  • Rosenqvist A, Finlayson CM, Lowry J et al (2007) The potential of long wavelength satellite borne radar to support implementation of the Ramsar Wetlands Convention. Aquat Conserv Mar Freshw Ecosyst 17(3):229–244

    Article  Google Scholar 

  • Roulet N, Moore T, Bubier J et al (1992) Northern fens-methane flux and climatic change. Tellus B 44:100–105

    Article  Google Scholar 

  • Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sahrawat KL (2004) Organic matter accumulation in submerged soils. Adv Agron 81:169–201

    Article  CAS  Google Scholar 

  • Sauer D, Sponagel H, Sommer M et al (2007) Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170:581–597

    Article  CAS  Google Scholar 

  • SCEP (1970) Man’s impact on the global environment: assessment and recommendations for action. The MIT Press, Cambridge

    Google Scholar 

  • Schawe M, Glatzel S, Gerold G (2007) Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: podzolization vs. hydromorphy. Catena 69:83–90

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, San Diego

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nat Geosci 478:49–56

    CAS  Google Scholar 

  • Schulze E-D, Luyssaert S, Ciais P et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. CarboEuropeTeam 2:842–850

    CAS  Google Scholar 

  • Strack M (ed) (2008) Peatlands and climate change. Intl Peat Soc, Vapaudenkatu

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23. doi:10.1029/2008GB003327

  • Thompson JA, Bell JC (1996) Color index for identifying hydric conditions for seasonally saturated mollisols in Minnesota. SSSA J 60:1979–1988

    CAS  Google Scholar 

  • Thompson JA, Bell JC (2001) Hydric soils indicators in mollisol landscapes. In: Richardson JL Vepraskas MJ (ed) Wetland soils. Genesis, hydrology, landscape and classification. Lewis Publishers, Boca Raton, pp 371–382

    Google Scholar 

  • Tiner RW (1998) In search of swampland: a wetland source book and field guide. Rutgers University Press, New Brunswick

    Google Scholar 

  • Tiner RW (1999) Wetland indicators: a guide to wetland identification, delineation, classification and mapping. Lewis Publishers, Boca Raton

    Book  Google Scholar 

  • Tooth S, McCarthy TS (2007) Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Prog Phys Geogr 31:3–41

    Article  Google Scholar 

  • Turquety S, Logan JA, Jacob DJ et al (2007) Inventory of boreal fire emissions for North America in 2004: importance of peat burning and pyroconvective injection. J Geophys Res Atmos 112. doi:10.1029/2006JD007281

  • Turunen J, Tomppo E, Tolonen K et al (2002) Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. Holocene 12(1):69–80

    Article  Google Scholar 

  • US Soil Taxonomy (2006). http://soils.usda.gov/technical/classification/tax_ke

  • van der Werf GR, Randerson JT, Giglio L et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735

    Article  Google Scholar 

  • Vicca S, Janssens IA, Flessa H et al (2009) Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels. Geobiology 7:465–476

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA (1936) Humus – origin, chemical composition, and importance in nature. The Williams and Wilkins Company, Baltimore

    Google Scholar 

  • Weltzin JF, Pastor J, Harth C et al (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478

    Article  Google Scholar 

  • Wheeler BD, Shaw SC (1995) Restoration of damaged peatlands with particular reference to lowland raised bogs affected by peat extraction. Department of the Environment, University of Sheffield, London

    Google Scholar 

  • Wieder RK, Vitt DH (eds) (2006) Boreal peatland ecosystems. Springer, Berlin

    Google Scholar 

  • Wieder RK, Scott KD, Kamminga K et al (2009) Postfire carbon balance in boreal bogs of Alberta, Canada. Glob Change Biol 15:63–81

    Article  Google Scholar 

  • World Energy Council (2007) Survey of energy resources 2007. London, UK. pp 586 (ISBN: 0946 121 265)

    Google Scholar 

  • WRB (2007) World reference base for soil resources 2006, first update 2007. FAO, Rome, pp 128

    Google Scholar 

  • Yu Z, Loisel J, Brosseau DP et al (2010) Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett 110. doi:10.1029/2010GL043584

  • Yu Z, Beilman DW, Frolking S et al (2011) Peatlands and their role in the global carbon cycle. EOS 92(12):97–98

    Article  Google Scholar 

  • Zoltai SC, Tarnocai C (1975) Perennial frozen peatlands in the western Arctic and sub-Arctic of Canada. Can J Earth Sci 12:28–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann F. Jungkunst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jungkunst, H.F. et al. (2012). Accounting More Precisely for Peat and Other Soil Carbon Resources. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_7

Download citation

Publish with us

Policies and ethics