Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition

Abstract

Virtually all types of molecular electronic devices depend on electronically addressing a molecule or molecular layer through the formation of a metallic contact. The introduction of molecular devices into integrated circuits will probably depend on the formation of contacts using a vapour deposition technique, but this approach frequently results in the metal atoms penetrating or damaging the molecular layer. Here, we report a method of forming ‘soft’ metallic contacts on molecular layers through surface-diffusion-mediated deposition, in which the metal atoms are deposited remotely and then diffuse onto the molecular layer, thus eliminating the problems of penetration and damage. Molecular junctions fabricated by this method exhibit excellent yield (typically >90%) and reproducibility, and allow examination of the effects of molecular-layer structure, thickness and contact work function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the SDMD process.
Figure 2: Cross-section of a PPF/NAB/Au junction.
Figure 3: J–V measurements for different deposition techniques.
Figure 4: J–V measurements for SDMD junctions with various molecular layers and top contacts.
Figure 5: J–V measurements for diaminoalkane monolayer junctions.

Similar content being viewed by others

References

  1. Bergren, A. J., Harris, K. D., Deng, F. J. & McCreery, R. L. Molecular electronics using diazonium-derived adlayers on carbon with Cu top contacts: critical analysis of metal oxides and filaments. J. Phys. Condens. Matter 20, 374117 (2008).

    Article  Google Scholar 

  2. Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    Article  CAS  Google Scholar 

  3. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  4. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005).

    Article  CAS  Google Scholar 

  5. Chabinyc, M. L. et al. Molecular rectification in a metal–insulator–metal junction based on self-assembled monolayers. J. Am. Chem. Soc. 124, 11730–11736 (2002).

    Article  CAS  Google Scholar 

  6. Scott, A., Janes, D. B., Risko, C. & Ratner, M. A. Fabrication and characterization of metal–molecule–silicon devices. Appl. Phys. Lett. 91, 033508 (2007).

    Article  Google Scholar 

  7. Metzger, R. M., Xu, T. & Peterson, I. R. Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J. Phys. Chem. B 105, 7280–7290 (2001).

    Article  CAS  Google Scholar 

  8. Wang, W. et al. Probing molecules in integrated silicon–molecule–metal junctions by inelastic tunneling spectroscopy. Nano Lett. 8, 478–484 (2008).

    Article  CAS  Google Scholar 

  9. Richter, C. A., Stewart, D. R., Ohlberg, D. A. A. & Williams, R. S. Electrical characterization of Al/AlOx/molecule/Ti/Al devices. Appl. Phys. A 80, 1355–1362 (2005).

    Article  CAS  Google Scholar 

  10. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  11. McCreery, R. L. & Bergren, A. J. Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication. Adv. Mater. 21, 4303–4322 (2009).

    Article  CAS  Google Scholar 

  12. Walker, A. V. et al. The dynamics of noble metal atom penetration through methoxy-terminated alkanethiolate monolayers. J. Am. Chem. Soc. 126, 3954–3963 (2004).

    Article  CAS  Google Scholar 

  13. Anariba, F., DuVall, S. H. & McCreery, R. L. Mono- and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy ‘scratching’. Anal. Chem. 75, 3837–3844 (2003).

    Article  CAS  Google Scholar 

  14. Richter, C. A., Hacker, C. A. & Richter, L. J. Electrical and spectroscopic characterization of metal/monolayer/Si devices. J. Phys. Chem. B 109, 21836–21841 (2005).

    Article  CAS  Google Scholar 

  15. Walker, A. V. et al. Chemical pathways in the interactions of reactive metal atoms with organic surfaces: vapor deposition of Ca and Ti on a methoxy-terminated alkanethiolate monolayer on Au. J. Phys. Chem. B 109, 11263–11272 (2005).

    Article  CAS  Google Scholar 

  16. Haick, H. & Cahen, D. Making contact: connecting molecules electrically to the macroscopic world. Prog. Surf. Sci. 83, 217–261 (2008).

    Article  CAS  Google Scholar 

  17. Zhu, Z. H. et al. Controlling gold atom penetration through alkanethiolate self-assembled monolayers on Au {111} by adjusting terminal group intermolecular interactions. J. Am. Chem. Soc. 128, 13710–13719 (2006).

    Article  CAS  Google Scholar 

  18. Haick, H., Ambrico, M., Ghabboun, J., Ligonzo, T. & Cahen, D. Contacting organic molecules by metal evaporation. Phys. Chem. Chem. Phys. 6, 4538–4541 (2004).

    Article  CAS  Google Scholar 

  19. Van Hal, P. A. et al. Upscaling, integration and electrical characterization of molecular junctions. Nature Nanotech. 3, 749–754 (2008).

    Article  CAS  Google Scholar 

  20. Ranganathan, S. & McCreery, R. L. Electroanalytical performance of carbon films with near-atomic flatness. Anal. Chem. 73, 893–900 (2001).

    Article  CAS  Google Scholar 

  21. Brooksby, P. A. & Downard, A. J. Electrochemical and atomic force microscopy study of carbon surface modification via diazonium reduction in aqueous and acetonitrile solutions. Langmuir 20, 5038–5045 (2004).

    Article  CAS  Google Scholar 

  22. Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).

    Article  CAS  Google Scholar 

  23. Kariuki, J. K. & McDermott, M. T. Formation of multilayers on glassy carbon electrodes via the reduction of diazonium salts. Langmuir 17, 5947–5951 (2001).

    Article  CAS  Google Scholar 

  24. Deinhammer, R. S., Ho, M., Anderegg, J. W. & Porter, M. D. Electrochemical oxidation of amine-containing compounds—a route to the surface modification of glassy-carbon electrodes. Langmuir 10, 1306–1313 (1994).

    Article  CAS  Google Scholar 

  25. Liu, C. L., Cohen, J. M., Adams, J. B. & Voter, A. F. EAM study of surface self-diffusion of single adatoms of FCC metals Ni, Cu, Al, Ag, Au, Pd and Pt. Surf. Sci. 253, 334–344 (1991).

    Article  CAS  Google Scholar 

  26. Speller, S., Molitor, S., Rothig, C., Bomermann, J. & Heiland, W. Surface mobility on the Au(110) surface observed with scanning tunneling microscopy. Surf. Sci. 312, L748–L752 (1994).

    Article  CAS  Google Scholar 

  27. Racz, Z. & Seabaugh, A. Characterization and control of unconfined lateral diffusion under stencil masks. J. Vac. Sci. Technol. B 25, 857–861 (2007).

    Article  CAS  Google Scholar 

  28. Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    Article  CAS  Google Scholar 

  29. Beebe, J. M., Kim, B., Frisbie, C. D. & Kushmerick, J. G. Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2, 827–832 (2008).

    Article  CAS  Google Scholar 

  30. Yan, H. J. & McCreery, R. L. Anomalous tunneling in carbon/alkane/TiO2/gold molecular electronic junctions: energy level alignment at the metal/semiconductor interface. ACS Appl. Mater. Interfaces 1, 443–451 (2009).

    Article  CAS  Google Scholar 

  31. Engelkes, V. B., Beebe, J. M. & Frisbie, C. D. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance. J. Am. Chem. Soc. 126, 14287–14296 (2004).

    Article  CAS  Google Scholar 

  32. Holmlin, R. E. et al. Electron transport through thin organic films in metal–insulator–metal junctions based on self-assembled monolayers. J. Am. Chem. Soc. 123, 5075–5085 (2001).

    Article  CAS  Google Scholar 

  33. Abelmann, L. & Lodder, C. Oblique evaporation and surface diffusion. Thin Solid Films 305, 1–21 (1997).

    Article  CAS  Google Scholar 

  34. Anariba, F. et al. Comprehensive characterization of hybrid junctions comprised of a porphyrin monolayer sandwiched between a coinage metal overlayer and a Si(100) substrate. J. Phys. Chem. C 112, 9474–9485 (2008).

    Article  CAS  Google Scholar 

  35. Nowak, A. M. & McCreery, R. L. Characterization of carbon/nitroazobenzene/titanium molecular electronic junctions with photoelectron and Raman spectroscopy. Anal. Chem. 76, 1089–1097 (2004).

    Article  CAS  Google Scholar 

  36. Ibach, H. Physics of Surfaces and Interfaces (Springer, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Sciences and Research Council of Canada, the Alberta Ingenuity Fund, the University of Alberta, and the National Institute for Nanotechnology (NINT). We acknowledge P. Li for FIB-TEM analysis, K. Harris and H. Yan for scientific discussions, and B. Szeto for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and R.M. conceived and designed the experiments, A.B. performed the experiments, A.B. and R.M. co-wrote the manuscript and Supplementary Information.

Corresponding author

Correspondence to Richard L. McCreery.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4799 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonifas, A., McCreery, R. ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nature Nanotech 5, 612–617 (2010). https://doi.org/10.1038/nnano.2010.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing