Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single nitrogen-vacancy defect coupled to a nanomechanical oscillator

Abstract

We position a single nitrogen-vacancy (NV) centre hosted in a diamond nanocrystal at the extremity of a SiC nanowire. This novel hybrid system couples the degrees of freedom of two radically different systems: a nanomechanical oscillator and a single quantum object. We probe the dynamics of the nano-resonator through time-resolved nanocrystal fluorescence and photon-correlation measurements, conveying the influence of a mechanical degree of freedom on a non-classical photon emitter. Moreover, by immersing the system in a strong magnetic field gradient, we induce a magnetic coupling between the nanomechanical oscillator and the NV electronic spin, providing nanomotion readout through a single electronic spin. Spin-dependent forces inherent to this coupling scheme are essential in a variety of active cooling and entanglement protocols used in atomic physics, and should now be within the reach of nanomechanical hybrid systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hybrid system.
Figure 2: A single quantum emitter with a mechanical degree of freedom.
Figure 3: Optically detected ESR measured on the suspended NV centre at rest.
Figure 4: Magnetic coupling of the NV electronic spin to the nanomotion observed on the mS=0 to mS=−1 transition.

Similar content being viewed by others

References

  1. Aspelmeyer, M. & Schwab, K. C. Focus on mechanical systems at the quantum limit. New J. Phys. 10, 095001 (2008).

    Article  ADS  Google Scholar 

  2. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  3. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (July, 2005).

    Article  Google Scholar 

  4. Blatt, R. & Wineland, D. J. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    Article  ADS  Google Scholar 

  5. Braginsky, V. B. & Khalili, F. Y. in Quantum Measurement (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  6. Wilson-Rae, I., Zoller, P. & Imamoglu, A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004).

    Article  ADS  Google Scholar 

  7. Hammerer, K. et al. Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 103, 063005 (2009).

    Article  ADS  Google Scholar 

  8. Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical oscillator. Phys. Rev. B 79, 041302 (2009).

    Article  ADS  Google Scholar 

  9. Hunger, D. et al. Resonant coupling of a Bose–Einstein condensate to a micromechanical oscillator. Phys. Rev. Lett. 104, 143002 (2010).

    Article  ADS  Google Scholar 

  10. LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    Article  ADS  Google Scholar 

  11. Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P. & Clerk, A. A. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010).

    Article  ADS  Google Scholar 

  12. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  13. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  ADS  Google Scholar 

  14. Brouri, R., Beveratos, A., Poizat, J-P. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).

    Article  ADS  Google Scholar 

  15. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  ADS  Google Scholar 

  16. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  17. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  18. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  ADS  Google Scholar 

  19. Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    Article  ADS  Google Scholar 

  20. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  ADS  Google Scholar 

  21. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  ADS  Google Scholar 

  22. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  ADS  Google Scholar 

  23. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  24. de Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article  ADS  Google Scholar 

  25. Rabl, P. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Phys. 6, 602–608 (2010).

    Article  ADS  Google Scholar 

  26. Perisanu, S. et al. High Q factor for mechanical resonances of batch-fabricated SiC nanowires. Appl. Phys. Lett. 90, 043113 (2007).

    Article  ADS  Google Scholar 

  27. Beveratos, A. et al. Room temperature stable single-photon source. Eur. Phys. J. D 18, 191–196 (2002).

    ADS  Google Scholar 

  28. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Article  ADS  Google Scholar 

  29. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  30. Kustov, M. et al. Magnetic characterization of micropatterned Nd–Fe–B hard magnetic films using scanning hall probe microscopy. J. Appl. Phys. 108, 063914 (2010).

    Article  ADS  Google Scholar 

  31. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  ADS  Google Scholar 

  32. Sanii, B. & Ashby, P. D. High sensitivity deflection detection of nanowires. Phys. Rev. Lett. 104, 147203 (2010).

    Article  ADS  Google Scholar 

  33. Favero, I. et al. Fluctuating nanomechanical system in a high finesse optical microcavity. Opt. Express 17, 12813–12820 (2009).

    Article  ADS  Google Scholar 

  34. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009).

    Article  ADS  Google Scholar 

  35. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a resonant microwave interferometer. Nature Phys. 4, 555–560 (2008).

    Article  Google Scholar 

  36. Rabl, P. Cooling of mechanical motion with a two-level system: The high-temperature regime. Phys. Rev. B 82, 165320 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Jarreau, C. Hoarau, D. Lepoitevin, J. F. Motte, P. Brichon, N. Dempsey, O. Fruchart, F. D. Bouchiat, D. Givord, E. Gheeraert, O. Mollet, A. Drezet, J. F. Roch, S. Huant and J. Chevrier for technical support, experimental assistance and discussions. This work is funded by the European Commission (Marie Curie ERG within FP7) and the Agence Nationale de la Recherche (projects QNAO and QNOM).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding author

Correspondence to O. Arcizet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arcizet, O., Jacques, V., Siria, A. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nature Phys 7, 879–883 (2011). https://doi.org/10.1038/nphys2070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing