Skip to main content
Log in

Chemosensors in environmental monitoring: challenges in ruggedness and selectivity

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Environmental analysis is a potential key application for chemical sensors owing to their inherent ability to detect analytes on-line and in real time in distributed systems. Operating a chemosensor in a natural environment poses substantial challenges in terms of ruggedness, long-term stability and calibration. This article highlights current trends of achieving both the necessary selectivity and ruggedness: one way is deploying sensor arrays consisting of robust broadband sensors and extracting information via chemometrics. If using only a single sensor is desired, molecularly imprinted polymers offer a straightforward way for designing artificial recognition materials. Molecularly imprinted polymers can be utilized in real-life environments, such as water and air, aiming at detecting analytes ranging from small molecules to entire cells.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Byrne R, Diamond D (2006) Nat Mater 5:421–424

    Article  CAS  Google Scholar 

  2. Greenwood R, Mills GA, Roig B (2007) TrAC, Trends Anal Chem 26:263–267

    Article  CAS  Google Scholar 

  3. Johnson KS, Needoba JA, Riser SC, Showers WJ (2007) Chem Rev 107:623–640

    Article  CAS  Google Scholar 

  4. Chapman H, Owusu Y (2008) IEEE Sens J 8:203–209

    Article  CAS  Google Scholar 

  5. Li SY, Kim YG, Jung S, Song HS, Lee SM (2007) Sens Actuators B 120:368–377

    Google Scholar 

  6. Oh M, Seo MW, Lee S, Park J (2008) J Contam Hydrol 96:69–82

    Article  CAS  Google Scholar 

  7. Lee JH, Jang A, Bhadri PR, Myers RR, Timmons W, Beyette FR Jr, Bishop PL, Papautsky I (2006) Sens Actuators B 115:220–226

    Article  CAS  Google Scholar 

  8. Je CH, Stone R, Oberg G (2007) Sci Total Environ 382:364–374

    Article  CAS  Google Scholar 

  9. Runkle RC, Brodzinski RL, Jordan DV, Hartman JS, Hensley WK, Maynard MA, Sliger WA, Smart JE, Todd LC (2005) Sensors 5:51–60

    Article  CAS  Google Scholar 

  10. Tsujita W, Yoshino A, Ishida H, Moriizumi T (2005) Sens Actuators B 110:304–311

    Article  CAS  Google Scholar 

  11. Feng J, Qu G, Potknojak M (2006) IEEE Sens J 6:1571–1579

    Article  Google Scholar 

  12. Bourgeois W, Romain AC, Nicolas J, Stuetz RM (2003) J Environ Monit 5:852–860

    Article  CAS  Google Scholar 

  13. Nake A, Dubreuil B, Raynaud C, Talou T (2005) Sens Actuators B 106:36–39

    Article  CAS  Google Scholar 

  14. Nix MB, Homer ML, Kisor AK, Soler J, Torres J, Manatt K, Jewell A, Ryan MA (2007) IEEE Potentials 26:18–24

    Article  Google Scholar 

  15. Palacios MA, Nishiyabu R, Marquez M, Anzenbacher P Jr (2007) 129:7538–7544

  16. Fraga C, Melville AM, Wright BW (2007) Analyst 132:230–236

    Article  CAS  Google Scholar 

  17. Nicolas J, Romain AC (2004) Sens Actuators B 99:384–392

    Article  CAS  Google Scholar 

  18. Sugimoto I, Nagaoka T, Seyama M, Nakamura M, Takahashi K (2007) Sens Actuators B 124:53–61

    Article  CAS  Google Scholar 

  19. Sarkar P, Ghosh D, Bhattacharya D, Kataky R, Setford SJ, White SF, Turner APF (2005) J Chem Technol Biotechnol 80:1389–1395

    Article  CAS  Google Scholar 

  20. Sapsford KE, Bradburne C, Delehanty JB, Mednitz IL (2008) Mater Today 11:38–49

    Article  CAS  Google Scholar 

  21. Borisov SM, Wolbeis OS (2008) Chem Rev (2008) 108:423–461

    Article  CAS  Google Scholar 

  22. Ye L, Haupt K (2004) Anal Bioanal Chem 378:1887–1897

    Article  CAS  Google Scholar 

  23. Hall AJ, Emgenbroich M, Sellergren B (2005) Top Curr Chem 249:317–349

    CAS  Google Scholar 

  24. Lieberzeit PA, Afzal A, Podlipna D, Krassnig S, Blumenstock H, Dickert FL (2007) Sens Actuators B 126:153–158

    Article  CAS  Google Scholar 

  25. Albano DR, Sevilla F III (2007) Sens Actuators B 121:129–134

    Article  CAS  Google Scholar 

  26. Suedee R, Intakong W, Lieberzeit PA, Wanichapichart P, Chooto P, Dickert FL (2007) J Appl Polym Sci 106:3861–3871

    Article  CAS  Google Scholar 

  27. Sánchez-Barragán I, Karim K, Costa-Fernández JM, Piletsky SA, Sanz-Medel A (2007) Sens Actuators B 123:798–804

    Article  CAS  Google Scholar 

  28. Lieberzeit PA, Rehman A, Najafi B, Dickert FL (2008) Anal Bioanal Chem 391:2897–2903

    Article  CAS  Google Scholar 

  29. Lieberzeit PA, Afzal A, Glanznig G, Dickert FL (2007) Anal Bioanal Chem 389:441–446

    Article  CAS  Google Scholar 

  30. Lieberzeit PA, Afzal A, Rehman A, Dickert FL (2007) Sens Actuators B 127:132–136

    Article  CAS  Google Scholar 

  31. Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418

    Article  CAS  Google Scholar 

  32. Estevez MC, Galve R, Sanchez-Baeza F, Pilar FM (2008) Chem Eur J 14:1906–1917

    Article  CAS  Google Scholar 

  33. Wang H, Meng S, Guo K, Liu Y, Yang P, Zhong W, Liu B (2008) Electrochem Commun 10:447–450

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Lieberzeit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberzeit, P.A., Dickert, F.L. Chemosensors in environmental monitoring: challenges in ruggedness and selectivity. Anal Bioanal Chem 393, 467–472 (2009). https://doi.org/10.1007/s00216-008-2464-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2464-3

Keywords

Navigation