Skip to main content
Log in

Effect of Absorption on the Efficiency of Terahertz Radiation Generation in the Metal Waveguide Partially Filled with Nonlinear Crystal LiNbO3, Dast or ZnTe

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The influence of terahertz (THz) radiation absorption on the efficiency of generation of coherent THz radiation in the system ‘nonlinear-optical crystal partially filling the cross section of a rectangular metal waveguide’ has been investigated. The efficiency of the nonlinear frequency conversion of optical laser radiation to the THz range depends on the loss in the system and the fulfillment of the phase-matching (FM) condition in a nonlinear crystal. The method of partially filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. The phase matching is achieved by numerical determination of the thickness of the nonlinear crystal, that is the degree of partial filling of the waveguide. The attenuation of THz radiation caused by losses both in the metal walls of the waveguide and in the crystal was studied, taking into account the dimension of the cross section of the waveguide, the degree of partial filling, and the dielectric constant of the crystal. It is shown that the partial filling of the waveguide with a nonlinear crystal results in an increase in the efficiency of generation of THz radiation by an order of magnitude, owing to the decrease in absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlosse, W. and Unger, H.G., Advances in Microwaves, New York: Academic Press, 1966.

    Google Scholar 

  2. Gallot, G., Jamison, S.P., McGowan, R.W., and Grischkowsky, D., J. Opt. Soc. Am. B, 2000, vol. 17, p. 851.

    Article  ADS  Google Scholar 

  3. Nikogosyan, A.S., Soviet Journal of Quantum Electronics, 1988, vol. 18(5), p. 624.

  4. Laziev, E.M. and Nikoghosyan, A.S., SPIE, Mode–Locked Lasers and Ultrafast Phenomena, 1991, vol. 1842, p. 113.

    Article  ADS  Google Scholar 

  5. Nikoghosyan, A.S., Martirosyan, R.M., Hakhoumian, A.A., Chamberlain, J.M., Dudley, R.A., and Zinov’ev, N.N., Electromagnetic waves and Electronic Systems, 2006, vol. 11(4), p. 47.

  6. Zernike, F. and Midwinter, J.E., Applied Nonlinear Optics, New York: John Wiley and Sons, 1973.

    Google Scholar 

  7. Sutherland, R.L., Handbook of Nonlinear Optics, New York: Marcel Dekker, 1996, pp. 87–88.

    Google Scholar 

  8. Hebling, J., Yeh, K.–L., Hoffmann, M.C., Bartal, B., and Nelson, K.A., J. Opt. Soc. Am. B, 2008, vol. 25(7), p. B6.

  9. Schneider, A., Stillhart, M., and Günter, P., Opt. Express, 2006, vol. 14, p. 5376.

    Article  ADS  Google Scholar 

  10. Walther, M., Jensby, K., Keiding, S.R., Takahashi, H., and Ito, H., Opt. Lett., 2000, vol. 25, p. 911.

    Article  ADS  Google Scholar 

  11. Schall, M., Helm, H., and Keiding, S.R., Int. J. Infrared Millim. Waves, 1999, vol. 20, p. 595.

    Article  Google Scholar 

  12. Schall, M., Walther, M., and Jepsen, P.U., Phys. Rev. B, 2001, vol. 64, p. 094301.

    Article  ADS  Google Scholar 

  13. Pálfalvi, L., Hebling, J., Kuhl, J., Péter, A., and Polgár, K., J. Appl. Phys., 2005, vol. 97, p. 123505.

    Article  ADS  Google Scholar 

  14. Yegorov, Yu.V., Chastichno zapolnennyye pryamougol'nyye volnovody (Partially Filled Rectangular Waveguides), Moscow: Sov. Radio, 1967.

    Google Scholar 

  15. Wu, X., Ravi, K., Huang, W.R., Zhоu, C., Zalden, P., et al., arXiv:1601.06921, 2016.

    Google Scholar 

  16. Huang, S.–W., Granados, E., Huang, W.R., Hong, K.–H., Zapata, L.E., and Kärtner, F.X., Optics Letters, 2013, vol. 38, p. 796.

    Article  ADS  Google Scholar 

  17. Nikoghosyan, A.S., Roeser, H.P., Martirosyan, R.M., et al., 38th Int. Conf. IRMMW–THz, 2013, Th P3–04.

    Google Scholar 

  18. Monoszlai, B., Vicario, C., Jazbinsek, M., et al., https://arxiv.org/pdf/1310.3721, 2013.

    Google Scholar 

  19. Vicario, C., Jazbinsek, M., Ovchinnikov, A.V., Chefonov, O.V., Ashitkov, S.I., Agranat, M.B., and Hauri, C.P., Optics Express, 2015, vol. 23, p. 4573.

    Article  ADS  Google Scholar 

  20. Hoffmann, M.C. and Fulop, J.A., J. Phys. D: Appl. Phys., 2011, vol. 44, p. 083001.

    Article  ADS  Google Scholar 

  21. Kang, B.J., Lee, S.–H., Kim, W.T., Lee, S.–C., et al., Adv. Funct. Mater., 2018, vol. 28, p. 1707195.

    Article  Google Scholar 

  22. Nikoghosyan, A.S., Ting, H., Shen, J., Мartirosyan, R.М., Tunyan, M.Yu., Papikyan, А.V., and Papikyan, А.А., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 256.

    Article  Google Scholar 

  23. Ranjkesh, N. and Shahabadi, M., Electronics Letters, 2006, vol. 42(21), p. 1230.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nikogosyan.

Additional information

Russian Text © A.S. Nikogosyan, R.M. Martirosyan, A.A. Hakhoumian, A.H. Makaryan, V.R. Tadevosyan, G.N. Goltsman, S.V. Antipov, 2019, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2019, Vol. 54, No. 1, pp. 128–137.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikogosyan, A.S., Martirosyan, R.M., Hakhoumian, A.A. et al. Effect of Absorption on the Efficiency of Terahertz Radiation Generation in the Metal Waveguide Partially Filled with Nonlinear Crystal LiNbO3, Dast or ZnTe. J. Contemp. Phys. 54, 97–104 (2019). https://doi.org/10.3103/S1068337219010122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337219010122

Keywords

Navigation