Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental realization of sub-shot-noise quantum imaging

This article has been updated

Abstract

The properties of quantum states have led to the development of new technologies, ranging from quantum information to quantum metrology1,2,3,4,5,6,7,8,9,10,11,12. A recent field of research to emerge is quantum imaging, which aims to overcome the limits of classical imaging by making use of the spatial properties of quantum states of light13,14,15,16,17,18 . In particular, quantum correlations between twin beams represent a fundamental resource for these studies19,20,21,22,23,24,25,26,27,28,29,30,31,32. One of the most interesting proposed schemes takes advantage of the spatial quantum correlations between parametric down-conversion light beams to realize sub-shot-noise imaging of weak absorbing objects14, leading ideally to noise-free imaging. Here, we present the first experimental realization of this scheme, showing its potential to achieve a larger signal-to-noise ratio than classical imaging methods. This work represents the starting point for this quantum technology, which we anticipate will have applications when there is a requirement for low-photon-flux illumination (for example for use with biological samples).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental imaging of a π-shaped titanium deposition with α(x) = 0.5 when σ = 0.35.
Figure 2: Experimental set-up.
Figure 3: Degree of correlation.
Figure 4: Ratio R between the signal-to-noise ratio in quantum imaging, and differential (dcl) and direct (cl) classical imaging.

Similar content being viewed by others

Change history

  • 08 March 2010

    In the version of this Letter originally published online, the signal-to-noise ratio equation was incorrect. The correct equation should have had an underbar to indicate temporal averaging. The error has been corrected for all versions of the Letter.

References

  1. Genovese, M. Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  2. Marcikic, I. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004).

    Article  ADS  Google Scholar 

  3. Tiefenbacher, F. et al. Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007).

    Article  ADS  Google Scholar 

  4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  MATH  Google Scholar 

  5. Jennewein, T. et al. Communications: quantum teleportation across the Danube. Nature 430, 849–849 (2004).

    Article  ADS  Google Scholar 

  6. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. O'Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  8. Kwiat, P. G. et al. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001).

    Article  ADS  Google Scholar 

  9. Yamamoto, T. et al. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).

    Article  ADS  Google Scholar 

  10. Pan, J. W. et al. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001).

    Article  ADS  Google Scholar 

  11. Pan, J. W. et al. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

    Article  ADS  Google Scholar 

  12. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. Kolobov (ed.) Quantum Imaging (Springer, 2007).

    Book  Google Scholar 

  14. Brambilla, E., Caspani, L., Jedrkiewicz, O., Lugiato, L. A. & Gatti, A. High-sensitivity imaging with multi-mode twin beams. Phys. Rev. A 77, 053807 (2008).

    Article  ADS  Google Scholar 

  15. Degiovanni, I. P., Bondani, M., Puddu, E., Andreoni, A. & Paris, M. Intensity correlations, entanglement properties, and ghost imaging in multimode thermal-seeded parametric down-conversion: theory. Phys. Rev. A 76, 062309 (2007).

    Article  ADS  Google Scholar 

  16. Boyer, V. et al. Entangled images from four-wave mixing. Science 321, 544–547 (2008).

    Article  ADS  Google Scholar 

  17. Boyer, V., Marino, A. M. & Lett, P. D. Generation of spatially broadband twin beams for quantum imaging. Phys. Rev. Lett. 100, 143601 (2008).

    Article  ADS  Google Scholar 

  18. Treps, N. et al. Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. Phys. Rev. Lett. 88, 203601 (2002).

    Article  ADS  Google Scholar 

  19. Heidmann, A., Horowicz, R. J., Reynaud, S., Giacobino, E. & Fabre, C. Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59, 2555–2557 (1987).

    Article  ADS  Google Scholar 

  20. Mertz, J., Heidmann, A., Fabre, C., Giacobino, E. & Reynaud, S. Observation of high intensity sub-Poissonian light using an optical parametric oscillator. Phys. Rev. Lett. 64, 2897–2900 (1990).

    Article  ADS  Google Scholar 

  21. Nabors, C. D. & Shelby, R. M. Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric oscillators. Phys. Rev. A 42, 556–559 (1990).

    Article  ADS  Google Scholar 

  22. Aytur, O. & Kumar, P. Pulsed twin beams of light. Phys. Rev Lett. 65, 1551–1554 (1990).

    Article  ADS  Google Scholar 

  23. Tapster, P. R., Seward, S. F. & Rarity, J. G. Sub-shot-noise measurement of modulated absorption using parametric down-conversion. Phys. Rev. A 44, 3266–3269 (1991).

    Article  ADS  Google Scholar 

  24. Souto Ribeiro, P. H., Schwob, C., Maitre, A. & Fabre, C. Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams. Opt. Lett. 22, 1893–1895 (1997).

    Article  ADS  Google Scholar 

  25. Vasilyev, M., Choi, S.-K., Kumar, P. & D'Ariano, M. Tomographic measurement of joint photon statistics of the twin-beam quantum state. Phys. Rev. Lett. 84, 2354–2357 (2000).

    Article  ADS  Google Scholar 

  26. Brambilla, E., Gatti, A., Bache, M. & Lugiato, L. A. Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion. Phys. Rev. A 69, 023802 (2004).

    Article  ADS  Google Scholar 

  27. Bondani, M., Allevi, A., Zambra, G., Paris, M. & Andreoni, A. Sub-shot-noise photon-number correlation in a mesoscopic twin beam of light. Phys. Rev. A 76, 013833 (2007).

    Article  ADS  Google Scholar 

  28. Blanchet, J.-L., Devaux, F., Furfaro, L. & Lanz, E. Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. Phys. Rev. Lett. 101, 233604 (2008).

    Article  ADS  Google Scholar 

  29. Degiovanni, I. P. et al. Monitoring the quantum-classical transition in thermally seeded parametric down-conversion by intensity measurements. Phys. Rev. A 79, 063836 (2009).

    Article  ADS  Google Scholar 

  30. Brida, G. et al. On the discrimination between quantum and classical state. Found. Phys. doi: 10.1007/s10701-009-9396-4.

    Article  ADS  MathSciNet  Google Scholar 

  31. Jedrkievicz, O. et al. Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion. Phys. Rev. Lett. 93, 243601 (2004).

    Article  ADS  Google Scholar 

  32. Brida, G. et al. Measurement of sub-shot-noise spatial correlations without background subtraction. Phys. Rev. Lett. 102, 213602 (2009).

    Article  ADS  Google Scholar 

  33. Bachor, H. A. & Ralph, T. C. A Guide to Experiments in Quantum Optics Ch. 9,10 (Wiley-VCH, 2004).

    Book  Google Scholar 

  34. Chen, H. et al. Lensless ghost imaging with true thermal light. Preprint at <http://arXiv0902.3712> (2009).

  35. Erkmen, B. & Shapiro, J. Ghost imaging: what is quantum, what is not. Preprint at <http://arXiv0612070> (2006).

  36. Puddu, E. et al. Ghost imaging with intense fields from chaotically seeded parametric downconversion. Opt. Lett. 32, 1132–1134 (2007).

    Article  ADS  Google Scholar 

  37. Magatti, D. et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005).

    Article  ADS  Google Scholar 

  38. Valencia, A. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005).

    Article  ADS  Google Scholar 

  39. Bennik, R. et al. ‘Two-photon’ coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002).

    Article  ADS  Google Scholar 

  40. Scarcelli, G. et al. Phase-conjugate mirror via two-photon thermal light imaging. App. Phys. Lett. 88, 061106 (2006).

    Article  ADS  Google Scholar 

  41. Strekalov, D. V. Observation of two-photon ‘ghost’ interference and diffraction. Phys. Rev. Lett. 74, 3600–3603 (1995).

    Article  ADS  Google Scholar 

  42. Brida, G., Genovese, M., Meda, A., Predazzi, E. & Ruo Berchera, I. Systematic study of the PDC speckle structure for quantum imaging applications. Int. J. Quant. Inf. 7, 139–147 (2009).

    Article  Google Scholar 

  43. Brida, G., Genovese, M., Meda, A., Predazzi, E. & Ruo Berchera, I. Tailoring PDC speckle structure. J. Mod. Opt. 56, 201–208 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Compagnia di San Paolo, by PRIN 2007FYETBY (CCQOTS) and by Regione Piemonte (E14). The authors thank E. Monticone and C. Portesi for the thin film deposition representing the weak absorbing object, A. Meda and P. Cadinu for help with data analysis and A. Gatti, E. Brambilla, L. Caspani and L. Lugiato for theoretical support.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work and data analysis were predominantly carried out by I.R.B., who also largely contributed to project planning with G.B. and M.G. I.R.B. wrote the paper, together with G.B. and M.G., who supervised the project and equipped the laboratory (M.G. leads the Quantum Optics group).

Corresponding author

Correspondence to I. Ruo Berchera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nature Photon 4, 227–230 (2010). https://doi.org/10.1038/nphoton.2010.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing