Skip to main content
Log in

HgCdTe detectors operating above 200 K

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports progress with work aimed at using HgCdTe detector arrays at temperatures above 200 K where cooling is possible with thermo-electric coolers. Both theoretical analysis and calculations based on the detector dark currents indicate that useful performance should be obtainable in this temperature range. However, measurements on the performance of two-dimensional arrays show that the thermal sensitivity degrades rapidly for temperatures above 200 K. The reduction in performance at higher temperatures is shown to be mainly due to increasing 1/f noise as the temperature increases. The noise is characterized as a function of bias and temperature and this is used to predict the noise equivalent temperature difference (NETD) as a function of temperature. We describe an approach for producing two-dimensional arrays based on biasing the detector elements at close to zero bias so that the 1/f noise is minimized. A camera based on this concept is described and an example of the imaging performance is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kohin, R. Blackwell, R.H. Murphy, and A. Leary, Proc. SPIE 5406, 422 (2004).

    Article  Google Scholar 

  2. C.M. Hanson, Proc. SPIE 5406, 454 (2004).

    Article  Google Scholar 

  3. M.A. Kinch, J. Electron. Mater. 29, 809 (2000).

    CAS  Google Scholar 

  4. N.T. Gordon, C.D. Maxey, C.L. Jones, R. Catchpole, and L. Hipwood, J. Appl. Phys. 91, (2002).

  5. H.D. Shih et al., Appl. Phys. Lett. 84, 1263 (2004).

    Article  CAS  Google Scholar 

  6. S. Velicu, G. Badano, Y. Selamet, C.H. Grein, J.P. Faurie, S. Sivananthan, P. Boieriu, D. Rafol, and R. Ashokan, J. Electron. Mater. 30, 711 (2001).

    CAS  Google Scholar 

  7. M. Chu, S. Mesropian, S. Terterian, H.K. Gurgenian, and M. Pauli, J. Electron. Mater. 33, 609 (2004).

    Article  CAS  Google Scholar 

  8. L.G. Hipwood, N.T. Gordon, C.L. Jones, C.D. Maxey, C. Shaw, J. Pilkington, and R.A. Catchpole, Proc. SPIE 5074, 185 (2003).

    Article  CAS  Google Scholar 

  9. C.D. Maxey, C.L. Jones, N.E. Metcalfe, R.A. Catchpole, N.T. Gordon, T. Ashley, A.M. White, and C.T. Elliott, Proc. SPIE 3122, 453 (1997).

    Article  CAS  Google Scholar 

  10. C.D. Maxey, M.U. Ahmed, P. Capper, C.L. Jones, N.T. Gordon, and A.M. White, J. Mater. Sci. Electron. Mater. 11, 565 (2000).

    Article  CAS  Google Scholar 

  11. N.T. Gordon, R.S. Hall, C.L. Jones, C.D. Maxey, N.E. Metcalfe, and R.A. Catchpole, J. Electron. Mater. 29, 818 (2000).

    CAS  Google Scholar 

  12. A.R. Beattie and A.M. White, J. Appl. Phys. 79, 802 (1996).

    Article  CAS  Google Scholar 

  13. S. Horn, P. Norton, K. Carson, R. Eden, and R. Clement, Proc. SPIE 5406, 332 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, N.T., Lees, D.J., Bowen, G. et al. HgCdTe detectors operating above 200 K. J. Electron. Mater. 35, 1140–1144 (2006). https://doi.org/10.1007/s11664-006-0233-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0233-7

Key words

Navigation