Skip to main content
Log in

Infrared and millimeter-wave sensors for military special operations and law enforcement applications

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We consider the application of infrared and millimeter-wave sensors, developed for the most part during the Cold War, to the solution of problems encountered by military special operations units and law enforcement personnel. These problems include detection of weapons concealed beneath clothing, through-the-wall surveillance, and wide-area surveillance under poor lighting conditions. Key sensors used in these applications are infrared cameras, millimeter-wave passive and active cameras, and millimeter-wave real-aperture and holographic radars. This paper discusses each type of sensor, describes its operation, and gives an example of its output, except in those cases where the device is early in its development phase and thus no outputs are available. All of these sensors form images, but the images are of varying quality. We conclude with a brief discussion of methods of using multiple sensors to improve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Currie, F. J. Demma, D. D. Ferris, Jr., R. W. McMillan, M. C. Wicks, and V. C. Vannicola, "Concealed Weapon Detection Systems,"Rome Laboratory Technical Journal, vol. 2, no. 1, Griffiss AFB, NY, June 1996.

  2. N. C. Currie, F. J. Demma, D. D. Ferris, Jr., B. R. Kwasowsky, R. W. McMillan, V. C. Vannicola, M. C. Wicks, “Sensor Fusion Applications For Concealed Weapon Detection”,Proc. IEEE, to be published

  3. J. Johnson, “Analysis of Image Forming Systems’,Proceedings of the Image Intensifier Symposium, Ft. Belvoir, VA, October 1957.

  4. J. Johnson and W. Lawson, “Performance Modeling Methods and Problems”,Proceedings of the IRIS Imaging Systems Group, January 1974.

  5. D. Shumaker, “Target Detection and Recognition Revisited”,Spectral Reflections, Volume 25, Number 3, ERIM, Ann Arbor, MI, July 1995.

    Google Scholar 

  6. -- “Target Detection and Recognition Revisited, Part II”,ibid., Volume 25, Number 4, October 1995.

  7. J. Mooney, “Charge-Coupled Devices in Infrared Imaging”,Optics and Photonics News, Vol. 6, No. 4, April 1995, pp. 29–31. W. A. Beck, “Photoconductive Gain and Generation-Recombination Noise in Multiple-Quantum-Well Infrared Detectors”,Appl. Phys. Lett., Vol. 63, No. 26, 27 December 1993, pp. 3589–3591.

    Google Scholar 

  8. E. A. Weatherwax, Lockheed Martin Corp., Orlando, FL, Private Communication, October 1995.

    Google Scholar 

  9. NIGHTSIGHT Thermal Vision System, Published by Texas Instruments, P.O. Box 655012, Dallas, TX, 1994

  10. C. M. Hanson, K. N. Sweetser, S. N. Frank, “Uncooled Thermal Imaging”,Texas Instruments Technical Journal, Vol. 11, No. 5, September–October 1994, pp. 2–10.

    Google Scholar 

  11. T. S. Hartwick, D. T. Hodges, D. H. Barker, F. B. Foote, “Far Infrared Imagery”,Applied Optics, Vol. 15, No. 8, August 1976, pp. 1919–1922.

    Google Scholar 

  12. M. F. Kimmitt, K. Miller, C. L. Platt, J. E. Walsh, “Infrared Output from a Compact High Pressure Arc Source, to be published.

  13. J. A. Gagliano, “MMW Radiometry”, inPrinciples and Applications of Millimeter-Wave Radar, N. C. Currie and C. E. Brown, Eds., Artech House, Inc., Boston, 1987, Chap. 18.

    Google Scholar 

  14. P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. E. Kapitzky, E. L. Moore, “Focal Plane Imaging Systems for Millimeter Wavelengths”,IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 10, Oct. 1993, pp. 1664–1675.

    Google Scholar 

  15. P. F. Goldsmith, G. Novak, R. M. Grosslein, P. J. Viscuso, R. B. Erickson, C. R. Predmore, “A 15-Element Focal Plane Array for 100 GHz”, Ibid.,, Vol. 40, No. 1, Jan. 1993, pp. 1–11.

    Google Scholar 

  16. J. Browne, “MM Waves and Commercial Applications”,Microwaves & RF, July 1992, pp. 113–116.

  17. J. Lovberg, R.-C. Chou, C. Martin, “Real-Time Millimeter-Wave Imaging Radiometer for Synthetic Vision”, SPIE Conference on Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles,Proc. SPIE, Vol. 2220, Orlando, FL, April 1994, pp.

  18. J. Lovberg, R.-C. Chou, C. Martin, J. Galliano, “Advances in Real-Time Millimeter-Wave Imaging Radiometers for Avionic Vision”,Proc. SPIE, Vol. 2463, Orlando, FL, April 1995.

  19. John Lovberg, Thermotrex Corporation, San Diego, CA, Private Communication, February 1996.

    Google Scholar 

  20. D. M. Sheen, D. L. McMakin, H. D. Collins, T. E. Hall, “Weapon Detection Using a Wideband Millimeter-Wave Linear Array Imaging Technique”, SPIE Conference on Substance Detection Systems,Proc. SPIE Vol. 2092, Innsbruck, Austria, October 1993, pp. 536–547.

  21. D. L. McMakin, D. M. Sheen, H. D. Collins, T. E. Hall, R. R. Smith, “Millimeter-Wave High-Resolution, Holographic Surveillance System”,ibid. pp. 525–535.

  22. D. M. Sheen, D. L. McMakin, H. D. Collins, T. E. Hall, “Near-Field Millimeter-Wave Imaging for Weapons Detection”,Proc. SPIE, Vol. 1824, “Applications of Signal and Image Processing in Explosive Detection Systems”, 1993, pp. 223–233.

  23. G. Tricoles and N. H. Farhat, “Microwave Holography: Applications and Techniques”,Proc. IEEE, Vol. 65, No. 1, January 1977, pp. 108–121.

    Google Scholar 

  24. M. Soumekh, “Bistatic Synthetic Aperture Radar Inversion with Application in Dynamic Object Imaging”,IEEE Transactions on Signal Processing, Vol. 39, No. 9, September 1991, pp. 2044–2055.

    Google Scholar 

  25. P. M. Morse and H. Feshbach,Methods of Theoretical Physics, McGraw-Hill Book Co., New York, 1953.

    Google Scholar 

  26. D. L. McMakin, Battelle Pacific Northwest Laboratories, Richland, WA, Private Communication, December 1994.

    Google Scholar 

  27. L. Frazier, “Surveillance Through Walls and Other Non-Metallic Materials”, Sixth Annual Dual-Use Technologies & Applications Conference, Syracuse, NY, June 1996.

Download references

Author information

Authors and Affiliations

Authors

Additional information

N. C. Currie and R. W. McMillan are permanently employed by the Georgia Institute of Technology, Georgia Tech Research Institute. They are working at Rome Laboratory supported by the Air Force Office of Scientific Research University Resident Research Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currie, N.C., Demma, F.J., Ferris, D.D. et al. Infrared and millimeter-wave sensors for military special operations and law enforcement applications. Int J Infrared Milli Waves 17, 1117–1138 (1996). https://doi.org/10.1007/BF02088899

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088899

Keywords

Navigation