Skip to main content
Log in

Low-noise wide-band hot-electron bolometer mixer based on an NbN film

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Finkel, G.N.Maslennikov, and G.N.Gol’tsman, Radiophys. Quantum Electron., 50, Nos. 10–11, 837 (2007).

    Article  ADS  Google Scholar 

  2. M. I. Finkel, S.N.Maslennikov, and G.N.Gol’tsman, Radiophys. Quantum Electron., 48, Nos. 10–11, 859 (2005).

    Article  ADS  Google Scholar 

  3. J. Baselmans, M. Hajenius, J.Gao, et al., Appl. Phys. Lett., 84, No. 11, 1958 (2004).

    Article  ADS  Google Scholar 

  4. P.Khosropanah, J.R. Gao, W. M. Laauwen, et al., Appl. Phys. Lett., 91, 221111 (2007).

    Article  ADS  Google Scholar 

  5. D.Meledin, C.-E.Tong, R.Blundell, et al., in: Proc. 13th Int. Symp. Space Terahertz Technology, Harvard Univ. Press, Cambridge, MA (2002), p. 65.

    Google Scholar 

  6. S.Cherednichenko, M.Kroug, P.Yagoubov, et al., in: Proc. 11th Int. Symp. Space Terahertz Technology, Ann Arbor, MI (2000), p. 219.

    Google Scholar 

  7. R.Wyss, B.Karasik, W. McGrath, et al., in: Proc. 10th Int. Symp. Space Terahertz Technology, Charlottesville, VA (1999), p. 215.

    Google Scholar 

  8. N.Perrin and C.Vanneste, Phys. Rev. B, 28, No. 9, 5150 (1983).

    Article  ADS  Google Scholar 

  9. Y.Vachtomin, S.Antipov, S.Maslennikov, et al., in: Proc. 15th Int. Symp. Space Terahertz Technology, Northampton, MA (2004), p. 236.

    Google Scholar 

  10. J. Baselmans, A. Baryshev, S.Reker, et al., Appl. Phys. Lett., 86, 163503 (2005).

    Article  ADS  Google Scholar 

  11. P. J.Burke, R. J. Schoelkopf, and D. E. Prober, J. Appl. Phys., 85, No. 3, 1644 (1999).

    Article  ADS  Google Scholar 

  12. B.Karasik and A.Elantiev, Appl. Phys. Lett., 68, No. 6, 853 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Gol’tsman.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 8, pp. 641–648, August 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabchun, S.A., Tretyakov, I.V., Pentin, I.V. et al. Low-noise wide-band hot-electron bolometer mixer based on an NbN film. Radiophys Quantum El 52, 576–582 (2009). https://doi.org/10.1007/s11141-010-9162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-010-9162-7

Keywords

Navigation