Skip to main content
Log in

Possibilities of acoustic thermometry for controlling targeted drug delivery

  • Acoustics of Living Systems. Biological Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Model acoustic thermometry experiments were conducted during heating of an aqueous liposome suspension. Heating was done to achieve the liposome phase transition temperature. At the moment of the phase transition, the thermal acoustic signal achieved a maximum and decreased, despite continued heating. During subsequent cooling of the suspension, when lipids again passed through the phase transition point, the thermal acoustic signal again increased, despite a reduction in temperature. This effect is related to an increase in ultrasound absorption by the liposome suspension at the moment of the lipid phase transition. The result shows that acoustic thermography can be used to control targeted delivery of drugs mixed in thermally sensitive liposomes, the integrity of which is violated during heating to the phase transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Brannon-Peppas and J. O. Blanchette, Adv. Drug Deliv. Rev. 64, 206 (2012).

    Article  Google Scholar 

  2. G. A. Koning, A. M. Eggermont, L. H. Lindner, and T. L. M. Hagen, Pharm. Res. 27, 1750 (2010).

    Article  Google Scholar 

  3. R. B. Genis, Biomembranes: Molecular Structure and Functions (Springer–Verlag, Michigan, 1989; Mir, Moscow, 1997).

    Google Scholar 

  4. V. F. Antonov, V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and A. S. Ivanov, Nature 283, 585 (1980).

    Article  ADS  Google Scholar 

  5. M. de Smet, E. Heijman, S. Langereis, N. M. Hijnen, and H. Grüll, J. Contr. Release 150, 102 (2011).

    Article  Google Scholar 

  6. T. Bowen, Passive remote temperature sensor system, U.S. Patent No. 4246784, (1981).

    Google Scholar 

  7. V. I. Mirgorodskii, V. I. Pasechnik, S. V. Peshin, A. A. Rubtsov, E. E. Godik, and Yu. V. Gulyaev, Dokl. Akad. Nauk SSSR 297, 1370 (1987).

    Google Scholar 

  8. R. L. Weaver and O. I. Lobkis, J. Acoust. Soc. Am. 113, 2611 (2003).

    Article  ADS  Google Scholar 

  9. O. A. Godin, J. Acoust. Soc. Am. 125, 1960 (2009).

    Article  ADS  Google Scholar 

  10. V. I. Pasechnik, A. A. Anosov, and K. M. Bograchev, Biomed. Radioelektron., No. 2, 3 (1999).

    Google Scholar 

  11. K. M. Bograchev, Acoust. Phys. 54, 705 (2008).

    Article  ADS  Google Scholar 

  12. M. S. Bosnyakov and Yu. V. Obukhov, Pattern Recognit. Image Anal. 13, 621 (2003).

    Google Scholar 

  13. A. A. Anosov and L. R. Gavrilov, Acoust. Phys. 51, 376 (2005).

    Article  ADS  Google Scholar 

  14. V. I. Pasechnik, A. A. Anosov, and M. G. Isrefilov, Ultrasonics 37, 63 (1999).

    Article  Google Scholar 

  15. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazanskii, A. D. Mansfel’d, and A. S. Sharakshané, Acoust. Phys. 54, 464 (2008).

    Article  ADS  Google Scholar 

  16. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazan- skii, A. D. Mansfel’d, and A. S. Sharakshané, Acoust. Phys. 55, 454 (2009).

    Article  ADS  Google Scholar 

  17. A. A. Anosov, V. I. Pasechnik, and K. M. Bograchev, Acoust. Phys. 44, 629 (1998).

    ADS  Google Scholar 

  18. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, M. V. Dvorni- kova, V. V. Dvornikova, A. S. Kazanskii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 59, 103 (2013).

    Article  ADS  Google Scholar 

  19. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazan- skii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 59, 482 (2013).

    Article  ADS  Google Scholar 

  20. A. A. Anosov, I. S. Balashov, R. V. Belyaev, V. A. Vilkov, R. V. Garskov, A. S. Kazanskii, A. D. Mansfel’d, and M. I. Shcherbakov, Biophysics 59, 447 (2014).

    Article  Google Scholar 

  21. A. A. Anosov, T. V. Sergeeva, A. I. Alekhin, R. V. Belyaev, V. A. Vilkov, O. N. Ivannikova, A. S. Kazanskii, O. S. Kuznetsova, Yu. A. Less, A. V. Lukovkin, A. D. Mansfel’d, Yu. V. Obukhov, A. G. Sanin, and A. S. Sharakshané, Biomed. Radioelektr., No. 5, 67 (2008).

    Google Scholar 

  22. A. A. Anosov, M. A. Antonov, and V. I. Pasechnik, Acoust. Phys. 46, 21 (2000).

    Article  ADS  Google Scholar 

  23. A. A. Anosov, Yu. N. Barabanenkov, and A. G. Sel’skii, Acoust. Phys. 49, 615 (2003).

    Article  ADS  Google Scholar 

  24. V. A. Burov, P. I. Darialashvili, S. N. Evtukhov, and O. D. Rumyantseva, Acoust. Phys. 50, 243 (2004).

    Article  ADS  Google Scholar 

  25. V. A. Burov, E. E. Kasatkina, A. O. Mar’in, and O. D. Rumyantseva, Acoust. Phys. 53, 508 (2007).

    Article  ADS  Google Scholar 

  26. V. I. Mirgorodskii, V. V. Gerasimov, and S. V. Peshin, Acoust. Phys. 52, 606 (2006).

    Article  ADS  Google Scholar 

  27. E. V. Krotov, M. V. Zhadobov, A. M. Reyman, G. P. Volkov, and V. P. Zharov, Appl. Phys. Lett. 81, 3918 (2002).

    Article  ADS  Google Scholar 

  28. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, M. V. Dvornikova, V. V. Dvornikova, A. S. Kazanskii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 58, 542 (2012).

    Article  ADS  Google Scholar 

  29. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazan- skii, A. D. Mansfel’d, and P. V. Subochev, Acoust. Phys. 59, 717 (2013).

    Article  ADS  Google Scholar 

  30. V. A. Vilkov, E. V. Krotov, A. D. Mansfel’d, and A. M. Reiman, Acoust. Phys. 51, 63 (2005).

    Article  ADS  Google Scholar 

  31. P. V. Subochev, A. D. Mansfel’d, and R. V. Belyaev, Vest. Nizhegor. Univ. im. N. I. Lobachevskogo, No. 5, 67 (2010).

    Google Scholar 

  32. S. Mitaku, T. Jippo, and R. Kataoka, J. Biophys. 42, 137 (1983).

    Article  Google Scholar 

  33. D. P. Kharakoz, A. Golotto, K. Lohner, and P. Laggner, J. Phys. Chem. 97, 9844 (1993).

    Article  Google Scholar 

  34. T. Bowen, Automedica (UK) 8, 247 (1987).

    Google Scholar 

  35. V. I. Passechnik, Ultrasonics 32, 293 (1994).

    Article  Google Scholar 

  36. A. A. Anosov, A. S. Kazanskii, Yu. A. Less, and A. S. Sharakshané, Acoust. Phys. 53, 746 (2007).

    Article  ADS  Google Scholar 

  37. A. A. Anosov, Yu. N. Barabanenkov, A. S. Kazanskij, Yu. A. Less, A. S. Sharakshané, Chem. Phys. Lipids 153, 81 (2008).

    Article  Google Scholar 

  38. A. D. Mansfel’d, Acoust. Phys. 55 (4-5), 556 (2009).

    Article  ADS  Google Scholar 

  39. D. B. Tata and F. Dunn, J. Phys. Chem. 96, 3548 (1992).

    Article  Google Scholar 

  40. F. Duck, Physical Properties of Tissue (Academic Press, London, 1990).

    Google Scholar 

  41. A. P. Sarvazyan, Ultrasonics 20, 151 (1982).

    Article  Google Scholar 

  42. D. P. Kharakoz, M. S. Panchelyuga, E. I. Tiktopulo, and E. A. Shlyapnikova, Chem. Phys. Lipids 50, 217 (2007).

    Article  Google Scholar 

  43. E. G. Aksel’rod, V. V. Bespalov, V. A. Dobrin, V. I. Kryuk, A. N. Kuz’min, and V. P. Melekhin, Dokl. Ross. Akad. Nauk 345, 320 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anosov.

Additional information

Original Russian Text © A.A. Anosov, O.Yu. Nemchenko, Yu.A. Less, A.S. Kazanskii, A.D. Mansfel’d, 2015, published in Akusticheskii Zhurnal, 2015, Vol. 61, No. 4, pp. 535–540.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Nemchenko, O.Y., Less, Y.A. et al. Possibilities of acoustic thermometry for controlling targeted drug delivery. Acoust. Phys. 61, 488–493 (2015). https://doi.org/10.1134/S1063771015040028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771015040028

Keywords

Navigation