Skip to main content
Log in

Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. G. Pavel’ev, N. V. Demarina, Yu. I.Koshurinov, et al., Semicond., 38, No. 9, 1105 (2004).

    Article  ADS  Google Scholar 

  2. C.P.Endres, F. Lewen, T. F.Giesen, et al., Rev. Sci. Instrum., 78, No. 4, 043106 (2007).

    Article  ADS  Google Scholar 

  3. L. Esaki and R.Tsu, IBM J. Res. Dev., 14, No. 1, 61 (1970).

    Article  Google Scholar 

  4. J. Faist, F.Capasso, D. L. Sivco, et al., Science, 264, No. 5158. 553 (1994).

    Article  ADS  Google Scholar 

  5. B. S. Williams, Y.Callebant, S.Kumar, et al., Appl. Phys. Lett., 82, No. 7, 1015 (2003).

    Article  ADS  Google Scholar 

  6. S. Seliverstov, S.Maslennikov, S. Ryabchun, et al., IEEE Trans. Appl. Superconduct., 25, No. 3, 1 (2015).

    Google Scholar 

  7. https://www.sofia.usra.edu/.

  8. J. J. Baselmans, M. Hajenius, J.R.Gao, et al., Appl. Phys. Lett., 84, No. 11, 1958 (2004).

    Article  ADS  Google Scholar 

  9. I.Tretyakov, S. Ryabchun, M. Finkel, et al., Appl. Phys. Lett., 98, No. 3, 033507 (2011).

    Article  ADS  Google Scholar 

  10. P.Pütz, C. E.Honingh, K. Jacobs, et al., Astron. Astrophys., 542, L2 (2012).

  11. J.R. Gao, J. N. Hovenier, Z.Q.Yang, et al., Appl. Phys. Lett., 86, No. 24, 244104 (2005).

    Article  ADS  Google Scholar 

  12. P.Khosropanah, W. Zhang, J. N. Hovenier, et al., J. Appl. Phys., 104, No. 11, 113106 (2008).

    Article  ADS  Google Scholar 

  13. J. L. Kloosterman, D. J.Hayton, Y.Ren, et al., Appl. Phys. Lett., 102, No. 1, 011123 (2013).

    Article  ADS  Google Scholar 

  14. Sh. Sh.Nabiev, A. I.Nadezhdinskii, D.B. Stavrovskii, et al., Rus. J. Phys. Chem. A, 85, No. 8, 1404 (2011).

    Article  Google Scholar 

  15. V. L.Vaks, E.G.Domracheva, V. A. Anfertyev, et al., Zh. Radioélektron., No. 2, 2 (2016).

  16. I.V.Tretyakov, M. I. Finkel, S.A.Ryabchun et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 591 (2014).

  17. J. J. A. Baselmans, A. Baryshev, S. F.Reker, et al., Appl. Phys. Lett., 86, No. 16, 163503 (2005).

    Article  ADS  Google Scholar 

  18. A. L. Betz, R.T. Boreiko, B. S. Williams, et al., Opt. Lett., 30, No. 14, 1837 (2005).

    Article  ADS  Google Scholar 

  19. M. Lee, M.C.Wanke, M. Lerttamrab, et al., IEEE J. Selected Topics Quantum Electron., 14, No. 2, 370 (2008).

    Article  Google Scholar 

  20. A. Maestrini, B.Thomas, H.Wang, et al., Comptes Rendus Physique, 11, No. 7, 480 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.V. Seliverstov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 7, pp. 579–587, July 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seliverstov, S., Anfertyev, V.A., Tretyakov, I.V. et al. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser. Radiophys Quantum El 60, 518–524 (2017). https://doi.org/10.1007/s11141-017-9822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9822-y

Navigation