Today: Mar 29, 2024
RU / EN
Last update: Mar 1, 2024
Terahertz Scanning for Evaluation of Corneal and Scleral Hydration

Terahertz Scanning for Evaluation of Corneal and Scleral Hydration

Iomdina E.N., Seliverstov S.V., Sianosyan A.A., Teplyakova K.O., Rusova A.A., Goltsman G.N.
Key words: cornea; sclera; THz radiation; corneal hydration; backward-wave oscillator; avalanche transit-time diode (IMPATT diode).
2018, volume 10, issue 4, page 143.

Full text

html pdf
1949
1476

The aim of the investigation was to study the prospects of using continuous THz scanning of the cornea and the sclera to determine water concentration in these tissues and on the basis of the obtained data to develop the experimental installation for monitoring corneal and scleral hydration degree.

Materials and Methods. To evaluate corneal and scleral transmittance and reflectance spectra in the THz range, the developed experimental installations were used to study 3 rabbit corneas and 3 scleras, 2 whole rabbit eyes, and 3 human scleras. Besides, two rabbit eyes were studied in vivo prior to keratorefractive surgery as well as 10 and 21 days following the surgery (LASIK).

Results. There have been created novel experimental installations enabling in vitro evaluation of frequency dependence of corneal and scleral transmittance coefficients and reflectance coefficients on water percentage in the THz range. Decrease in corneal water content by 1% was found to lead to reliably established decrease in the reflected signal by 13%. The reflectance spectrum of the whole rabbit eye was measured in the range of 0.13–0.32 THz. The study revealed the differences between the indices of rabbit cornea and sclera, as well as rabbit and human sclera.

There was developed a laboratory model of the installation for in vivo evaluation of corneal and scleral hydration using THz radiation.

Conclusion. The preliminary findings show that the proposed technique based on the use of continuous THz radiation can be employed to create a device for noninvasive control of corneal and scleral hydration.

  1. Serov V.V., Shekhter A.B. Soedinitel’naya tkan’ (funktsional’naya morfologiya i obshchaya patologiya) [Connective tissue (functional morphology and general pathology)]. Moscow: Meditsina; 1981.
  2. International review of connective tissue research. Vol. 10. Edited by Hall D.A., Jackson D.S. Elsevier; 2013.
  3. Fatt I., Weissman B.A. Physiology of the eye: an introduction to the vegetative functions. Butterworth-Heinemann; 2013.
  4. Vanmeter W.S., Lee W.B., Katz D.G. Corneal edema. In: Tasman W., Jaeger E.A. (editors). Duane’s Ophthalmology. Vol. 4. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.
  5. Lim G.C., Lin H.C., Shen S.C., Lin K.K. Toxic keratopathy-related corneal dehydration after laser in situ keratomileusis. J Cataract Refract Surg 2005; 31(8): 1656–1658, https://doi.org/10.1016/j.jcrs.2005.01.020.
  6. Iomdina E.N. Biomekhanicheskie i biokhimicheskie narusheniya sklery pri progressiruyushchey blizorukosti i metody ikh korrektsii. V kn.: Zritel’nye funktsii i ikh korrektsiya u detey [Biomechanical and biochemical disorders of sclera in progressive myopia and methods of their correction. In: Visual functions and their correction in children]. Pod red. Avetisova S.E., Kashchenko T.P., Shamshinovoy A.M. [Avetisov S.E., Kashchenko T.P., Shamshinova A.M. (editors)]. Moscow: Meditsina; 2005; p. 163–183.
  7. Iomdina E.M., Tarutta E.P. Modern trends of basic research in pathogenesis of progressive myopia. Vestnik Rossiyskoy akademii meditsinskikh nauk 2014; 69(3–4): 44–49.
  8. McBrien N.A., Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res 2003; 22(3): 307–338, https://doi.org/10.1016/s1350-9462(02)00063-0.
  9. Rada J.A.S., Shelton S., Norton T.T. The sclera and myopia. Exp Eye Res 2006; 82(2): 185–200, https://doi.org/10.1016/j.exer.2005.08.009.
  10. Iomdina E.N., Ignatieva N.U., Danilov N.A., Arutunyan L.L., Kiseleva O.A., Nazarenko L.A. Biochemical, structural and biomechanical features of human scleral matrix in primary open-angle glaucoma. Vestnik oftal’mologii 2011; 127(6): 10–14.
  11. Iomdina E.N., Bauer S.M., Kotlyar K.E. Biomekhanika glaza: teoreticheskie aspekty i klinicheskie prilozheniya [Biomechanics of the eye: theoretical aspects and clinical applications]. Moscow: Real Taym; 2015.
  12. Danilov N.A., Ignatieva N.Y., Grokhovskaya T.E., Lunin V.V., Iomdina E.N., Arutyunyan L.L. Sclera of the glaucomatous eye: physicochemical analysis. Biophysics 2011; 56(3): 490–495, https://doi.org/10.1134/s0006350911030067.
  13. Coudrillier B., Tian J., Alexander S., Myers K.M., Quigley H.A., Nguyen T.D. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 2012; 53(4): 1714–1728, https://doi.org/10.1167/iovs.11-8009.
  14. Singh R.S., Tewari P., Bourges J.L., Hubschman J.P., Bennett D.B., Taylor Z.D., Lee H., Brown E.R., Grundfest W.S., Culjat M.O. Terahertz sensing of corneal hydration. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 3021–3024, https://doi.org/10.1109/iembs.2010.5626146.
  15. Seliverstov S., Maslennikov S., Ryabchun S., Finkel M., Klapwijk T.M., Kaurova N., Smirnov Y., Voronov B., Gol’tsman G. Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer. IEEE Trans Appl Supercond 2015; 25(3): 1–4, https://doi.org/10.1109/tasc.2014.2372171.
  16. Taylor Z.D., Singh R.S., Culjat M.O., Suen J.Y., Grundfest W.S., Brown E.R. THz imaging based on water-concentration contrast. In: Jensen J.O., Cui H.-L., Woolard D.L., Hwu R.J. (editors). Terahertz for military and security applications VI. SPIE; 2008, https://doi.org/10.1117/12.785337.
  17. Wallace V.P., Fitzgerald A.J., Shankar S., Flanagan N., Pye R., Cluff J., Arnone D.D. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br J Dermatol 2004; 151(2): 424–432, https://doi.org/10.1111/j.1365-2133.2004.06129.x.
  18. Dougherty J.P., Jubic G.D., Kiser W.L. Jr. Terahertz imaging of burned tissue. In: Linden K.J., Sadwick L.P. (editors). Terahertz and gigahertz electronics and photonics VI. SPIE; 2007, https://doi.org/10.1117/12.705137.
  19. Sensing with terahertz radiation. Springer series in optical sciences. Mittleman D. (editor). Springer Berlin Heidelberg; 2003, https://doi.org/10.1007/978-3-540-45601-8.
  20. Bajwa N., Au J., Jarrahy R., Sung S., Fishbein M.C., Riopelle D., Ennis D.B., Aghaloo T., St John M.A., Grundfest W.S., Taylor Z.D. Non-invasive terahertz imaging of tissue water content for flap viability assessment. Biomed Opt Express 2017; 8(1): 460–474, https://doi.org/10.1364/boe.8.000460.
  21. Bennett D.B., Taylor Z.D., Tewari P., Singh R.S., Culjat M.O., Grundfest W.S., Sassoon D.J., Johnson R.D., Hubschman J.P., Brown E.R. Terahertz sensing in corneal tissues. J Biomed Opt 2011; 16(5): 057003, https://doi.org/10.1117/1.3575168.
  22. Taylor Z.D., Garritano J., Sung S., Bajwa N., Bennett D.B., Nowroozi B., Tewari P., Sayre J.W., Hubschman J.-P., Deng S.X., Brown E.R., Grundfest W.S. THz and mm-wave sensing of corneal tissue water content: in vivo sensing and imaging results. IEEE Trans Terahertz Sci Technol 2015; 5(2): 184–196, https://doi.org/10.1109/tthz.2015.2392628.
  23. Nazarov M.M., Shkurinov A.P., Cherkasova O.P. Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy. Quantum Electronics 2016; 46(6): 488–495, https://doi.org/10.1070/qel16107.
  24. Liu W.-Q., Lu Y.-F., Jiao G.-H., Chen X.-F., Zhou Z.-S., She R.-B., Li J.-Y., Chen S.-H., Dong Y.-M., Lv J.-C. Spectroscopic measurements and terahertz imaging of the cornea using a rapid scanning terahertz time domain spectrometer. Chinese Physics B 2016; 25(6): 060702, https://doi.org/10.1088/1674-1056/25/6/060702.
  25. Liu W.-Q., Lu Y.-F., Jiao G.-H., Chen X.-F., Li J.-Y., Chen S.-H., Dong Y.-M., Lv J.-C. Terahertz optical properties of the cornea. Optics Communications 2016; 359: 344–348, https://doi.org/10.1016/j.optcom.2015.09.107.
  26. Iomdina E.N., Goltsman G.N., Seliverstov S.V., Sianosyan A.A., Teplyakova K.O., Rusova A.A. Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range. J Biomed Opt 2016; 21(9): 097002, https://doi.org/10.1117/1.jbo.21.9.097002.
Iomdina E.N., Seliverstov S.V., Sianosyan A.A., Teplyakova K.O., Rusova A.A., Goltsman G.N. Terahertz Scanning for Evaluation of Corneal and Scleral Hydration. Sovremennye tehnologii v medicine 2018; 10(4): 143, https://doi.org/10.17691/stm2018.10.4.17


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg