Skip to main content
Log in

The current stage of development of the receiving complex of the millimetron space observatory

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.asc.rssi.ru/millimetron.

  2. http://www.laspace.ru/rus/index.php.

  3. K. Irwin, App. Phys. Lett ., 66, 1998 (1995).

    Article  ADS  Google Scholar 

  4. P. K. Day, H. G. LeDuc, B. A. Mazin, et al., Nature, 425, 817 (2003).

    Article  ADS  Google Scholar 

  5. B. S. Karasik and R. Cantor, Appl. Phys. Lett ., 98, 193503 (2011).

    Article  ADS  Google Scholar 

  6. L. S. Kuzmin, I.A. Devyatov, and D. Golubev, Proc. SPIE, 3465, 193 (1998).

    Article  ADS  Google Scholar 

  7. S. N. Chesnokov, D. E. Dolzhenko, I. I. Ivanchik, and D. R. Khokhlov, Infrared Phys., 35, 23 (1994).

    Article  Google Scholar 

  8. P. Khosropanah, B. Dirks, M. Parra-Borderias, et al., Proc. SPIE, 7741, 77410L (2010).

    Article  Google Scholar 

  9. D. Morozov, P. D. Mauskopf, P. A. R. Ade, et al., IEEE Trans. Appl. Supercond., 21, 188 (2011).

    Article  ADS  Google Scholar 

  10. P. D. Mauskopf, D. Morozov, P. A. R. Ade, et al., in: Proc. 22nd Int. Symp. Space Terahertz Technol., Tucson, USA, 2011, p. 130.

  11. http://www.roe.ac.uk/ukatc/projects/scubatwo.

  12. L. Ferrari, M. D.Audley, G. de Lange, et al., in: Proc. 22nd Int. Symp. Space Terahertz Technol., Tucson, USA, 2011, p. 90.

  13. A. Monfardini, A. Bideaud, A. Benoit, et al., Astrophys. J. Suppl. Series, 194, No. 2, 24 (2011).

    Article  ADS  Google Scholar 

  14. L. J. Swenson, A. Cruciani, A. Benoit, et al., Appl. Phys. Lett ., 96, 263511 (2010).

    Article  ADS  Google Scholar 

  15. M. Roesch, A. Benoit, A. Bideaud, et al., Proc. 22nd Int. Symp. Space Terahertz Technol., Tucson, USA, 2011, p. 53.

  16. M. Gershenson, D. Gong, T. Sato, et al., Appl. Phys. Lett ., 79, 2049 (2001).

    Article  ADS  Google Scholar 

  17. A. Andreev, Sov. Phys. JETP., 19, 1228 (1964).

    Google Scholar 

  18. B. Karasik, K. Il’in, E. Pechen, and S. Krasnosvobodtsev, Appl. Phys. Lett ., 68, No. 16, 2285 (1996).

    Article  ADS  Google Scholar 

  19. L. Kuzmin, in: Proc. SPIE Conf., 2004, Vol. 5498, p. 349.

  20. A. Agulo, L. Kuzmin, and M. Tarasov, Proc. 16th Int. Symp. Space Terahertz Technol., Gothenburg, Sweden, 2005, p. 147.

  21. M. Tarasov, L. Kuzmin, N. Kaurova, et al., in: Proc. 21th Int. Symp. Space Terahertz Technol., Oxford, UK, 2010, p. 256.

  22. D. E. Dolzhenko, L. I. Ryabova, A. V. Nicorici, and D. R. Khokhlov, in: Proc. 19th Int. Symp. “Nanostructures: Physics and Technology”, Ekaterinburg, Russia, 2011, p. 247.

  23. J. R. Tucker, IEEE J. Quantum Electron., 15, 1234 (1979).

    Article  ADS  Google Scholar 

  24. J. R. Tucker and M. J. Feldman, Rev. Mod. Phys., 57, 1055 (1985).

    Article  ADS  Google Scholar 

  25. C.-Y. E. Tong, R. Blundell, B. Bumble, et al., in: Proc. 7th Int. Symp. Space Terahertz Technol., Charlottesville, Virginia, USA, 1996, p. 47.

  26. A. Karpov, J. Blondel, M. Voss, and K. Gundlach, IEEE Trans. Appl. Supercond., 9, 4456 (1999).

    Article  Google Scholar 

  27. G. Chattopadhyay, F. Rice, D. Miller, et al., IEEE Microwave and Guided Wave Lett ., 9, No. 11, 467 (1999).

    Article  Google Scholar 

  28. A. Hedden, H. Li, E. Tong, et al., in: IEEE MTT-S Int. Microwave Symp. Digest, 2009, p. 949.

  29. G. de Lange, J. J. Kuipers, T. M. Klapwijk, et al., J. Appl. Phys., 77, 1795 (1995).

    Article  ADS  Google Scholar 

  30. A. Karpov, D. Miller, F. Rice, et al., IEEE Trans. Appl. Supercond., 17, No. 2, 343 (2007).

    Article  ADS  Google Scholar 

  31. P. N. Dmitriev, A.B. Ermakov, N. V. Kinev, et al., Usp. Sovrem. Radioélektron., No. 5, 75 (2010).

  32. M. Yu. Torgashin, V. P. Koshelets, P. N. Dmitriev, et al., IEEE Trans. Appl. Supercond., 17, No. 2, 379 (2007).

    Article  ADS  Google Scholar 

  33. G. de Lange, M. Birk, D. Boersma, et al., Supercond. Sci. Technol ., 23, No. 4, 045016 (2010).

    Article  ADS  Google Scholar 

  34. O. Kiselev, M. Birk, A. Ermakov, et al., IEEE Trans. Appl. Supercond., 21, No. 3, 612 (2011).

    Article  ADS  Google Scholar 

  35. R. Ozhegov, K. Gorshkov, G. Gol’tsman, et al., Supercond. Sci. Technol ., 24, 035003 (2011).

    Article  ADS  Google Scholar 

  36. E. M. Gershenzon, G. N. Gol’tsman, A. I. Elantiev, et al., Low Temp. Phys.., 14, No. 7, 753 (1988).

    Google Scholar 

  37. G. N. Gol’tsman, A. D. Semenov, Yu. P. Gousev, et al., Superconductors: Science and Technology, 4, 453 (1991).

    Article  ADS  Google Scholar 

  38. Y. Lobanov, C.-E. Tong, A. Hedden, et al., IEEE Trans. Appl. Supercond., 21, No. 3, 628 (2011).

    Article  ADS  Google Scholar 

  39. I. Tretyakov, S. Ryabchun, M. Finkel, et al., Appl. Phys. Lett ., 98, 033507 (2011).

    Article  ADS  Google Scholar 

  40. Yu. Vachtomin, M. Finkel, S. Antipov, et al., in: Proc. 13th Int. Symp. Space Terahertz Technol., Harvard University Press, Cambridge, MA, 2002, p. 259.

  41. J. J. A. Baselmans, M. Hajenius, J. R. Gao, et al., Appl. Phys. Lett ., 84, 1958 (2004).

    Article  ADS  Google Scholar 

  42. P. Khosropanah, J. R. Gao, W. M. Laauwen, et al., Appl. Phys. Lett ., 91, 221111 (2007).

    Article  ADS  Google Scholar 

  43. W. Zhang, P. Khosropanah, J. R. Gao, et al., Appl. Phys. Lett ., 96, 111113 (2010).

    Article  ADS  Google Scholar 

  44. S. Cherednichenko, V. Drakinskiy, T. Berg, et al., Rev. Sci. Instrum., 79, 034501 (2008).

    Article  ADS  Google Scholar 

  45. http://www.sofia.usra.edu.

  46. B. Manfred, W. Georg, G. de Lange, et al., in: Proc. 21th Int. Symp. Space Terahertz Technol, Oxford, UK, 2010, p. 195.

  47. http://www.apex-telescope.org.

  48. D. P. Marrone, R. Blundell, E. Tong, et al., in: Proc. 16th Int. Symp. Space Terahertz Technology, Goteborg, Sweden, 2005, p. 64.

  49. W. Wild, N. S. Kardashev, Experimental Astron., 23, No. 1, 221 (2008).

    Article  ADS  Google Scholar 

  50. S. Maslennikov, M. Finkel, S. Antipov, et al., in: Proc. 17th Int. Symp. Space Terahertz Technology, Paris, France, 2006, p. 174.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Smirnov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 54, No. 8–9, pp. 617–630, August–September 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, A.V., Baryshev, A.M., de Bernardis, P. et al. The current stage of development of the receiving complex of the millimetron space observatory. Radiophys Quantum El 54, 557–568 (2012). https://doi.org/10.1007/s11141-012-9314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-012-9314-z

Keywords

Navigation