Skip to main content
Log in

Universal Bottleneck for Thermal Relaxation in Disordered Metallic Films

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We study the heat relaxation in current biased metallic films in the regime of strong electron–phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering, the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of bias voltage, in spite of the fact that all the dimensions of the film are large compared to the electron–phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron–phonon scattering rate. A preliminary experimental study of a 200-nm-thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).

    Article  ADS  Google Scholar 

  2. I. Holzman and Y. Ivry, Adv. Quantum Technol. 2, 1800058 (2019).

    Article  Google Scholar 

  3. F. Marsili, M. J. Stevens, A. Kozorezov, V. B. Verma, C. Lambert, J. A. Stern, R. D. Horansky, S. Dyer, S. Duff, D. P. Pappas, A. E. Lita, M. D. Shaw, R. P. Mirin, and S. W. Nam, Phys. Rev. B 93, 094518 (2016).

    Article  ADS  Google Scholar 

  4. L. Zhang, L. You, X. Yang, J. Wu, C. Lv, Q. Guo, W. Zhang, H. Li, W. Peng, Z. Wang, and X. Xie, Sci. Rep. 8, 1486 (2018).

    Article  ADS  Google Scholar 

  5. T. M. Klapwijk and A. V. Semenov, IEEE Trans. Terahertz Sci. Technol. 7, 627 (2017).

    Article  ADS  Google Scholar 

  6. I. Tamir, A. Benyamini, E. J. Telford, F. Gorniaczyk, A. Doron, T. Levinson, D. Wang, F. Gay, B. Sacepe, J. Hone, K. Watanabe, T. Taniguchi, C. R. Dean, A. N. Pasupathy, and D. Shahar, Sci. Adv. 5, eaau3826 (2019).

  7. D. Yu. Vodolazov, Phys. Rev. Appl. 7, 034014 (2017).

    Article  Google Scholar 

  8. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, J. Appl. Phys. 108, 084507 (2010).

    Article  ADS  Google Scholar 

  9. F. Marsili, F. Najafi, C. Herder, and K. K. Berggren, Appl. Phys. Lett. 98, 093507 (2011).

    Article  ADS  Google Scholar 

  10. L. Zhang, L. You, X. Yang, Y. Tang, M. Si, K. Yan, W. Zhang, H. Li, H. Zhou, W. Peng, and Z. Wang, Appl. Phys. Lett. 115, 132602 (2019).

    Article  ADS  Google Scholar 

  11. E. Baeva, M. Sidorova, A. Korneev, K. Smirnov, A. Divochy, P. Morozov, P. Zolotov, Y. Vakhtomin, A. Semenov, T. Klapwijk, V. Khrapai, and G. Goltsman, Phys. Rev. Appl. 10, 064063 (2018).

    Article  ADS  Google Scholar 

  12. D. Rall, P. Probst, M. Hofherr, S. Wunsch, K. Il’in, U. Lemmer, and M. Siegel, J. Phys.: Conf. Ser. 234, 042029 (2010).

    Google Scholar 

  13. A. Kardakova, M. Finkel, D. Morozov, V. Kovalyuk, P. An, C. Dunscombe, M. Tarkhov, P. Mauskopf, T. M. Klapwijk, and G. Goltsman, Appl. Phys. Lett. 103, 252602 (2013).

    Article  ADS  Google Scholar 

  14. M. V. Sidorova, A. G. Kozorezov, A. V. Semenov, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, G. M. Chulkova, and G. N. Goltsman, Phys. Rev. B 97, 184512 (2018).

    Article  ADS  Google Scholar 

  15. M. Sidorova, A. Semenov, H.-W. Hubers, K. Ilin, M. Siegel, I. Charaev, M. Moshkova, N. Kaurova, G. N. Goltsman, X. Zhang, and A. Schilling, arXiv: 1907.05039.

  16. R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

    Article  ADS  Google Scholar 

  17. K. E. Nagaev, Phys. Rev. B 52, 4740 (1995).

    Article  ADS  Google Scholar 

  18. V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853 (1995).

    Article  ADS  Google Scholar 

  19. S. U. Piatrusha, V. S. Khrapai, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. S. Tikhonov, Phys. Rev. B 96, 245417 (2017).

    Article  ADS  Google Scholar 

  20. K. Nagaev, Phys. Lett. A 169, 103 (1992).

    Article  ADS  Google Scholar 

  21. K. Smirnov, A. Divochiy, Y. Vakhtomin, P. Morozov, P. Zolotov, A. Antipov, and V. Seleznev, Supercond. Sci. Technol. 31, 035011 (2018).

    Article  ADS  Google Scholar 

  22. E. S. Tikhonov, M. Y. Melnikov, D. V. Shovkun, L. Sorba, G. Biasiol, and V. S. Khrapai, Phys. Rev. B 90, 161405 (2014).

    Article  ADS  Google Scholar 

  23. S. U. Piatrusha, L. V. Ginzburg, E. S. Tikhonov, D. V. Shovkun, G. Koblmuller, A. V. Bubis, A. K. Grebenko, A. G. Nasibulin, and V. S. Khrapai, JETP Lett. 108, 71 (2018).

    Article  ADS  Google Scholar 

  24. T. Elo, P. Lahteenmaki, D. Golubev, A. Savin, K. Arutyunov, and P. Hakonen, J. Low Temp. Phys. 189, 204 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to I.V. Tretyakov and A.V. Semenov for valuable discussions.

Funding

The development of the theoretical model was supported by the Russian Foundation for Basic Research (project no. 19-32-80037). The fabrication of the NbN sample and transport characterization were supported by the Russian Science Foundation (project no. 17-72-30036). Noise measurements were supported by the Russian Science Foundation (project no. 19-12-00326). A.I. Kardakova and E.M. Baeva acknowledge the support of the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. MK-1308.2019.2). The data analysis was supported by the Ministry of Science and Higher Education of the Russian Federation (state task for the Institute of Solid State Physics, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Khrapai.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 2, pp. 88-92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeva, E.M., Titova, N.A., Kardakova, A.I. et al. Universal Bottleneck for Thermal Relaxation in Disordered Metallic Films. Jetp Lett. 111, 104–108 (2020). https://doi.org/10.1134/S0021364020020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020020034

Navigation