Skip to main content
Log in

The Global/Regional Integrated Model system (GRIMs)

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A multiscale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. This article outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model, Preprints. Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

    Google Scholar 

  • Byun, U.-Y., S.-Y. Hong, H. Shin, J.-W. Lee, J.-I. Song, S.-J. Hahm, J.-K. Kim, H.-W. Kim, and J.-S. Kim, 2011: WRF-based short-range forecast system of the Korea Air Force: Verification of prediction skill in 2009 summer. Atmosphere, 21, 197–208. (in Korean with English abstract)

    Google Scholar 

  • Byun, Y.-H., and S.-Y. Hong, 2004: Impact of boundary layer processes on simulated tropical rainfall. J. Climate, 17, 4032–4044.

    Article  Google Scholar 

  • ____, and _____, 2007: Improvements in the subgrid-scale representation of moist convection in a cumulus parameterization scheme: The single-column test and its impact on seasonal prediction. Mon. Wea. Rev., 135, 2135–2154.

    Article  Google Scholar 

  • Campana, K. A., Y.-T. Hou, K. E. Mitchell, S.-K. Yang, and R. Cullather, 1994: Improved diagnostic cloud parameterization in NMC’s global model. 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 324–325.

    Google Scholar 

  • Cha, D. H., D. K. Lee, and S. Y. Hong, 2008: Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model. Meteor. Atmos. Phys., 100, 53–72.

    Article  Google Scholar 

  • Chang, E.-C., and S.-Y. Hong, 2011: Projected climate change scenario over East Asia by a regional spectral model. J. Korean Earth Sci. Soc., 32, 770–783.

    Article  Google Scholar 

  • ____, S.-W. Yeh, S.-Y. Hong, J.-E. Kim, and R. Wu, 2012: Analysis on a decadal shift of precipitation over East Asia in the mid-1990s using a global downscaled precipitation dataset. J. Climate, in review.

    Google Scholar 

  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640.

    Article  Google Scholar 

  • Cheong, H.-B., 2000a: Double Fourier series on a sphere: Applications to elliptic and vorticity equations. J. Comput. Phys., 157, 327–349.

    Article  Google Scholar 

  • ____, 2000b: Application of double Fourier series to the shallow-water equations on a sphere. J. Comput. Phys., 165, 261–287.

    Article  Google Scholar 

  • ____, 2006: A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299–1315.

    Article  Google Scholar 

  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762–772.

    Article  Google Scholar 

  • ____, and K.-T. Lee, 1996: Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53, 1203–1208.

    Article  Google Scholar 

  • ____, and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Vol. 15, NASA/TM-1999-104606, 38 pp.

    Google Scholar 

  • ____, and K.-T. Lee, 2005: A parameterization of the effective layer emission for infrared radiation calculations. J. Atmos. Sci., 62, 531–541.

    Article  Google Scholar 

  • ____, S.-C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159–169.

    Article  Google Scholar 

  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299–3310.

    Article  Google Scholar 

  • Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the Coupled Model Intercomparison Project. Global Planet. Change, 37, 103–133.

    Article  Google Scholar 

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630.

    Article  Google Scholar 

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series, Vol. 2, Cambridge University, 457 pp.

    Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851.

    Article  Google Scholar 

  • Fels, S. B., and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 1475–1488.

    Article  Google Scholar 

  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphereocean coupling on the predictability of monsoon intraseasonal oscillation. J. Atmos. Sci., 64, 157–174.

    Article  Google Scholar 

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29–55.

    Article  Google Scholar 

  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288–296.

    Article  Google Scholar 

  • Ham, S., S.-Y. Hong, Y.-H. Byun, and J. Kim, 2009: Effects of precipitation physics algorithms on a simulated climate in a general circulation model. J. Atmos. Sol. Terr. Phys., 71, 1924–1934.

    Article  Google Scholar 

  • ____, S.-J. Park, C.-H. Bang, B.-J. Jung, and S.-Y. Hong, 2005: Intercomparison of the East-Asian summer monsoon on 11–18 July 2004, simulated by WRF, MM5, and RSM models. Atmosphere, 15, 91–99. (in Korean with English abstract)

    Google Scholar 

  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520–533.

    Article  Google Scholar 

  • Hendon, H. H., 2000: Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.

    Article  Google Scholar 

  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481–1496.

    Article  Google Scholar 

  • ____, and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.

    Article  Google Scholar 

  • ____, and _____, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 2599–2620.

    Article  Google Scholar 

  • ____, and A. Leetmaa, 1999: An evaluation of the NCEP RSM for regional climate modeling. J. Climate, 12, 592–609.

    Article  Google Scholar 

  • ____, and E. Kalnay, 2000: Role of sea surface temperature and soilmoisture feedback in the 1998 Oklahoma-Texas drought. Nature, 408, 842–844.

    Article  Google Scholar 

  • ____, and H.-L. Pan, 2000: Impact of soil moisture anomalies on seasonal, summertime circulation over North America in a regional climate model. J. Geophys. Res., 105, 29625–29634.

    Article  Google Scholar 

  • ____, and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific J. Atmos. Sci., 42, 129–151.

    Google Scholar 

  • ____, and E.-C. Chang, 2012: Spectral nudging sensitivity experiments in a regional climate model. Asia-Pacific J. Atmos. Sci., 48, 345–355.

    Article  Google Scholar 

  • ____, and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6–ES9.

    Article  Google Scholar 

  • ____, H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639.

    Article  Google Scholar 

  • ____, _____, and D.-K. Lee, 1999: Evaluation of a regional spectral model for the East Asian monsoon case studies for July 1987 and 1988. J. Meteor. Soc. Japan, 77, 553–572.

    Google Scholar 

  • ____, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • ____, J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523–531.

    Article  Google Scholar 

  • ____, S. Ham, Y.-H. Byun, and J. Kim, 2009a: Investigation of icecloud radiation interaction in a general circulation model. Asia-Pacific J. Atmos. Sci., 45, 391–409.

    Google Scholar 

  • ____, K.-S. S. Lim, J.-H. Kim, J.-O. J. Lim, and J. Dudhia, 2009b: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 61–76.

    Article  Google Scholar 

  • ____, _____, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010a: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, doi:707210.701155/702010/707253.

    Google Scholar 

  • ____, N.-K. Moon, K.-S. Lim, and J.-W. Kim, 2010b: Future climate change scenarios over Korea using a multi-nested downscaling system: A pilot study. Asia-Pacific J. Atmos. Sci., 46, 425–435.

    Article  Google Scholar 

  • ____, M.-S. Koo, J.-E. Kim, M.-S. Cho, J.-H. Kang, and T.-J. Oh, 2011a: An evaluation of the system software dependency of a global spectral model. Extended Abstract, The 2011 Korean Meteorological Society Spring Conf., Kongju, Korea, Korean Meteor. Soc., 2–3.

    Google Scholar 

  • ____, H. M. Kim, J.-E. Kim, S.-O. Hwang, and H. Park, 2011b: The impact of model uncertainties on analyzed data in a global data assimilation system. Terr. Atmos. Ocean. Sci., 22, 41–47.

    Article  Google Scholar 

  • ____, J. Jang, H. H. Shin, and J. Lee, 2012: An explicitly-coupled shallow convection parameterization with planetary boundary processes. Preprints, The 12th WRF Workshop, Boulder, CO, NCAR.

    Google Scholar 

  • Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637–655.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50.

    Article  Google Scholar 

  • ____, D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.

    Article  Google Scholar 

  • Hurkmans, R., W. Terink, R. Uijlenhoet, P. Torfs, D. Jacob, and P. A. Troch, 2010: Changes in streamflow dynamics in the Rhine basin under three high-resolution regional climate scenarios. J. Climate, 23, 679–699.

    Article  Google Scholar 

  • Hwang, S.-O., and S.-Y. Hong, 2010: Investigation of moisture field assimilation in global reanalysis. J. Atmos. Sol. Terr. Phys., 72, 556–564.

    Article  Google Scholar 

  • ____, and _____, 2012: The impact of observation systems on medium-range weather forecasting in a global forecast system. Asia- Pacific J. Atmos. Sci., 48, 159–170.

    Article  Google Scholar 

  • ____, _____, and M. Kanamitsu, 2010: Impacts of assimilated data on reanalysis climatology. Asia-Pacific J. Atmos. Sci., 46, 185–197.

    Article  Google Scholar 

  • Jeon, J.-H., S.-Y. Hong, H.-Y. Chun, and I.-S. Song, 2010: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pacific J. Atmos. Sci., 46, 1–10.

    Article  Google Scholar 

  • Juang, H.-M. H., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122, 3–26.

    Article  Google Scholar 

  • ____, and S.-Y. Hong, 2001: Sensitivity of the NCEP regional spectral model to domain size and nesting strategy. Mon. Wea. Rev., 129, 2904–2922.

    Article  Google Scholar 

  • ____, _____, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 2125–2143.

    Article  Google Scholar 

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    Google Scholar 

  • ____, and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kanamaru, H., and M. Kanamitsu, 2007: Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135, 334–350.

    Article  Google Scholar 

  • Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335–342.

    Article  Google Scholar 

  • ____, and S.-O. Hwang, 2006: The role of sea surface temperature in reanalysis. Mon. Wea. Rev., 134, 532–552.

    Article  Google Scholar 

  • ____, and Coauthors, 2002a: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019–1037.

    Article  Google Scholar 

  • ____, W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002b: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • ____, K. Yoshimura, Y.-B. Yhang, and S.-Y. Hong, 2010: Errors of interannual variability and trend in dynamical downscaling of reanalysis. J. Geophys. Res., 115, D17115.

    Article  Google Scholar 

  • Kang, H.-S., and S.-Y. Hong, 2008: Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119.

    Article  Google Scholar 

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108, 3079, doi: 10.1029/2000JC000736.

    Article  Google Scholar 

  • Kim, E.-J., and S.-Y. Hong, 2010a: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118.

    Article  Google Scholar 

  • Kim, J.-E., and S.-Y. Hong, 2007: Impact of soil moisture anomalies on summer rainfall over East Asia: A regional climate model study. J. Climate, 20, 5732–5743.

    Article  Google Scholar 

  • ____, and _____, 2010b: Assessment of hydroclimate predictability under global warming. Extended Abstract, The 2010 Korean Meteorological Society Fall Conf., Pusan, Korea, Korean Meteor. Soc., 50–51.

    Google Scholar 

  • ____, and _____, 2012: A global atmospheric analysis dataset downscaled from the NCEP-DOE reanalysis. J. Climate, 25, 2527–2534.

    Article  Google Scholar 

  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902.

    Article  Google Scholar 

  • Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.

    Article  Google Scholar 

  • Koo. M.-S., S.-Y. Hong, and J. Kim, 2009: An evaluation of the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) data over South Korea. Asia-Pacific J. Atmos. Sci., 45, 265–282.

    Google Scholar 

  • Lee, J.-L., and A. E. MacDonald, 2009: A finite-volume icosahedral shallow-water model on a local coordinate. Mon. Wea. Rev., 137, 1422–1437.

    Article  Google Scholar 

  • Li, H., M. Kanamitsu, and S.-Y. Hong, 2012: California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system. J. Geophys. Res., 117, D12118, doi:10.1029/2011JD-017372.

    Article  Google Scholar 

  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202.

    Article  Google Scholar 

  • Majewski, D., D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, and J. Baumgardner, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319–338.

    Article  Google Scholar 

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978–1002.

    Article  Google Scholar 

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.

    Article  Google Scholar 

  • Neale, R. B., and B. J. Hoskins, 2001: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1, 101–107.

    Article  Google Scholar 

  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427.

    Article  Google Scholar 

  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 692 pp. [Available oneline at http://www.gfdl.noaa.gov/~smg/MOM/web/guide_parent/guide_parent.html].

    Google Scholar 

  • Pan, H. L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185–202.

    Article  Google Scholar 

  • ____, and W.-S. Wu, 1995: Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office Note 409, 40 pp.

    Google Scholar 

  • Park, B.-K., and S.-Y. Hong, 2010: Impacts of initial estimate and physical proccesses on the weather forecast. Extended Abstract, The 2010 Korean Meteorological Society Fall Conf., Pusan, Korea, Korean Meteor. Soc., 180–181.

    Google Scholar 

  • Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151–169.

    Article  Google Scholar 

  • Rabier, F., 2005: Overview of global data assimilation developments in numerical weather-prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215–3233.

    Article  Google Scholar 

  • Randall, D. A., R. Heikes, and T. Ringer, 2000: Global Atmospheric Modeling using a Geodesic Grid with an Isentropic Vertical Coordinate. General Circulation Model Development. Academic Press, New York, 509-538 pp.

    Google Scholar 

  • Ringler, T. D., R. P. Heikes, and D. A. Randall, 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon. Wea. Rev., 128, 2471–2490.

    Article  Google Scholar 

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Tech. Rep. 349, Max Planck Institute for Meteorology, 127 pp.

    Google Scholar 

  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517.

    Article  Google Scholar 

  • Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108, 1279–1292.

    Article  Google Scholar 

  • Seol, K.-H., and S.-Y. Hong, 2009: Relationship between the Tibetan snow in spring and the East Asian summer monsoon in 2003: A global and regional modeling study. J. Climate, 22, 2095–2110.

    Article  Google Scholar 

  • ____, _____, and M. Kanamitsu, 2010: Investigation of land surface process over the ARM SGP in 1997 summer using a single-column model. Preprints, 22nd Conf. on Climate Variability and Change, Atlanta, GA, Amer. Meteor. Soc.

    Google Scholar 

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347–404.

    Article  Google Scholar 

  • Shimpo, A., M. Kanamitsu, S. F. Iacobellis, and S.-Y. Hong, 2008: Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature. Mon. Wea. Rev., 136, 2557–2575.

    Article  Google Scholar 

  • Shin, H., and S.-Y. Hong, 2009: Quantitative precipitation forecast experiments of heavy rainfall over Jeju Island on 14–16 September 2007 using the WRF model. Asia-Pacific J. Atmos. Sci., 45, 71–89.

    Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

    Google Scholar 

  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105.

    Article  Google Scholar 

  • Song, J.-H., H.-S. Kang, Y.-H. Byun, and S.-Y. Hong, 2010: Effects of the Tibetan plateau on the Asian summer monsoon: a numerical case study using a regional climate model. Int. J. Climatol., 30, 743–759.

    Google Scholar 

  • Stuhne, G. R., and W. R. Peltier, 2006: A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: A new numerical structure for ocean general circulation modeling. J. Comput. Phys., 213, 704–729.

    Article  Google Scholar 

  • Sun, W.-Y., K.-H. Min, and J.-D. Chern, 2011: Numerical study of 1998 late summer flood in East Asia. Asia-Pacific J. Atmos. Sci., 47, 123–135.

    Article  Google Scholar 

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.

    Article  Google Scholar 

  • Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Beitr. Phys. Atmos., 57, 216–239.

    Google Scholar 

  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357–400.

    Article  Google Scholar 

  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148.

    Article  Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Wang, W., 2012: Evaluation of convective parameterizations at different grid-sizes in the WRF model. Preprint, The 6th East Asia WRF Workshop and Tutorial, Seoul, Korea, Seoul Natl. Univ.

    Google Scholar 

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

    Google Scholar 

  • WMO, 2010: Manual on the global data-processing and forecasting system, Volume I - Global aspects. World Meteorological Organization Document WMO-No. 485. [Available online at http://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en_colour.pdf].

    Google Scholar 

  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Yhang, Y.-B., and S.-Y. Hong, 2008: Improved physical processes in a regional climate model and their impact on the simulated summer monsoon circulations over East Asia. J. Climate, 21, 963–979.

    Article  Google Scholar 

  • Yoshimura, K., and M. Kanamitsu, 2008: Dynamical global downscaling of global reanalysis. Mon. Wea. Rev., 136, 2983–2998.

    Article  Google Scholar 

  • Yulaeva, E., M. Kanamitsu, and J. Roads, 2008: The ECPC coupled prediction model. Mon. Wea. Rev., 136, 295–316.

    Article  Google Scholar 

  • Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 1931–1953.

    Article  Google Scholar 

  • Zheng, Y. D. E. Waliser, W. F. Stern, and C. Jones, 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17, 4109–4134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-You Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SY., Park, H., Cheong, HB. et al. The Global/Regional Integrated Model system (GRIMs). Asia-Pacific J Atmos Sci 49, 219–243 (2013). https://doi.org/10.1007/s13143-013-0023-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0023-0

Key words

Navigation