Skip to main content

Advertisement

Log in

Thirty-two-year ocean–atmosphere coupled downscaling of global reanalysis over the Intra-American Seas

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study examines the oceanic and atmospheric variability over the Intra-American Seas (IAS) from a 32-year integration of a 15-km coupled regional climate model consisting of the Regional Spectral Model (RSM) for the atmosphere and the Regional Ocean Modeling System (ROMS) for the ocean. It is forced at the lateral boundaries by National Centers for Environmental Prediction-Department of Energy (NCEP-DOE R-2) atmospheric global reanalysis and Simplified Ocean Data Assimilation global oceanic reanalysis. This coupled downscaling integration is a free run without any heat flux correction and is referred as the Regional Ocean–Atmosphere coupled downscaling of global Reanalysis over the Intra-American Seas (ROARS). The paper examines the fidelity of ROARS with respect to independent observations that are both satellite based and in situ. In order to provide a perspective on the fidelity of the ROARS simulation, we also compare it with the Climate Forecast System Reanalysis (CFSR), a modern global ocean–atmosphere reanalysis product. Our analysis reveals that ROARS exhibits reasonable climatology and interannual variability over the IAS region, with climatological SST errors less than 1 °C except along the coastlines. The anomaly correlation of the monthly SST and precipitation anomalies in ROARS are well over 0.5 over the Gulf of Mexico, Caribbean Sea, Western Atlantic and Eastern Pacific Oceans. A highlight of the ROARS simulation is its resolution of the loop current and the episodic eddy events off of it. This is rather poorly simulated in the CFSR. This is also reflected in the simulated, albeit, higher variance of the sea surface height in ROARS and the lack of any variability in the sea surface height of the CFSR over the IAS. However the anomaly correlations of the monthly heat content anomalies of ROARS are comparatively lower, especially over the Gulf of Mexico and the Caribbean Sea. This is a result of ROARS exhibiting a bias of underestimation (overestimation) of high (low) clouds. ROARS like CFSR is also able to capture the Caribbean Low Level Jet and its seasonal variability reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alpert JC, Kanamitsu M, Caplan PM, Sela JG, White G, Kalnay E (1988) Mountain induced gravity wave drag parameterization in the NMC medium-range model. Preprints, eighth conference on numerical weather prediction, Baltimore, MD. Amer Meteor Soc, pp 726–733

  • Amador JA (2008) The Intra-Americas Sea Low Level Jet (IALLJ): overview and future research, trends, and directions in climate research. Ann N Y Acad Sci 1146:153–188

    Article  Google Scholar 

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Bosart LF, Lin SC (1984) A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon Weather Rev 112:2148–2177

    Article  Google Scholar 

  • Bosilovich MG, Schubert SD (2002) Water vapor tracers as diagnostics of the regional hydrologic cycle. J Hydrom 3:149–165

    Article  Google Scholar 

  • Carton JA, Chepurin G, Cao X, Giese BS (2000) A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–1995, Part I: methodology. J Phys Oceanogr 30:294–309

    Article  Google Scholar 

  • Chan S, Misra V (2010) A diagnosis of the 1979–2005 extreme rainfall events in the southeastern United States with Isentropic Moisture Tracing. Mon Weather Rev 138:1172–1185

    Article  Google Scholar 

  • Chang Y-L, Oey L-Y (2010) Eddy and wind-forced heat transports in the Gulf of Mexico. J Phys Oceanogr 40:2728–2742

    Article  Google Scholar 

  • Chassignet EP, Hulburt HE, Smedstad OM, Barron CN, Ko DS, Rhodes RC, Shriver JF, Wallcraft AJ, Arnone AR (2005) Assessment of data assimilative ocean models in the Gulf of Mexico using Ocean Color. Circ Gulf Mex Obs Models 161:87–100

    Google Scholar 

  • Chérubin LM, Sturges W, Chassignet EP (2005) Deep flow variability in the vicinity of the Yucatan Straits from a high-resolution MICOM simulation. J Geophys Res 110:C04009. doi:10.1029/2004JC002280

    Google Scholar 

  • Chérubin LM, Morel Y, Chassignet EP (2006) Loop current ring shedding: the formation of cyclones and the effect of topography. J Phys Oceanogr 36:569–591

    Article  Google Scholar 

  • Chou M-D, Lee K-T (1996) Parameterizations for the absorption of solar radiation by water vapor and ozone. J Atmos Sci 53:1203–1208

    Article  Google Scholar 

  • Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. Technical report series on global modeling and data assimilation, NASA/TM-1994-104606, 3, 85 pp

  • Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale 437 Eta model. J Geophys Res 108:8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311

    Article  Google Scholar 

  • Granger OE (1985) Caribbean climates. Prog Phys Geogr 9(1):16–43

    Article  Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281

    Article  Google Scholar 

  • Hastenrath S (1967) Rainfall distribution and regime in Central America. Arch Meteor Geophys Bioklimatol 15B:201–241

    Article  Google Scholar 

  • Hastenrath S (1976) Variations in low-latitude circulation and extreme climatic events in the tropical Americas. J Atmos Sci 33:20–215

    Article  Google Scholar 

  • Hastenrath S (1978) On the modes of tropical circulation and anomalies. J Atmos Sci 35:22220–22231

    Article  Google Scholar 

  • Hastenrath S (1984) Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Mon Weather Rev 112:1097–1107

    Article  Google Scholar 

  • Hastenrath S (2002) The intertropical convergence zone of the Eastern Pacific revisited. Int J Climatol 22:347–356

    Article  Google Scholar 

  • Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339

    Article  Google Scholar 

  • Hurlburt HE, Thompson JD (1980) A numerical study of loop current intrusions and eddy shedding. J Phys Oceanogr 10:1611–1651

    Article  Google Scholar 

  • Hurrel JG, Meehl A, Bader D, Delworth TL, Kirtman B, Wielicki B (2009) A unified modeling approach to climate system prediction. Bull Am Meteorol Soc 90:1819–1832

    Article  Google Scholar 

  • Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175

    Article  Google Scholar 

  • Juang HMH, Kanamitsu M (1994) The NMC nested regional spectral model. Mon Weather Rev 122:3–26

    Article  Google Scholar 

  • Juang HMH, Hong SY, Kanamitsu M (1997) The NCEP regional spectral model: an update. Bull Am Meteorol Soc 78:2125–2143

    Article  Google Scholar 

  • Kanamaru H, Kanamitsu M (2007) Scale-selective bias correction in a downscaling of global reanalysis using a regional model. Mon Weather Rev 135:334–350

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Wollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis. Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kanamitsu M, Yoshimura K, Yhang Y, Hong S (2010) Errors of interannual variability and multi-decadal trend in dynamical regional climate downscaling and its corrections. J Geophys Res 115:D17115

    Article  Google Scholar 

  • Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090

    Article  Google Scholar 

  • Large WG, Yeager SG (2009) The global climatology of an internationally varying air–sea flux data set. Clim Dyn 33:341–364

    Article  Google Scholar 

  • Li H, Kanamitsu M, Hong SY (2012) California reanalysis downscaling at 10 km using an ocean–atmosphere coupled regional model system. J Geophys Res 117:D12118. doi:10.1029/2011JD017372

    Google Scholar 

  • Li H, Kanamitsu M, Hong SY, Yoshimura K, Cayan DR, Misra V (2013a) A high-resolution ocean–atmosphere coupled downscaling of a present climate over California. Clim Dyn. doi:10.1007/s00382-013-1670-7

    Google Scholar 

  • Li H, Kanamitsu M, Hong SY, Yoshimura K, Cayan DR, Misra V, Sun L (2013b) Projected climate change scenario over California by a regional ocean–atmosphere coupled model system. Clim Change. doi:10.1007/s10584-013-1025-8

    Google Scholar 

  • Liu Y, Lee S-K, Muhling BA, Lamkin JT, Enfield DB (2012) Significant reduction of the Loop Current in the 21st century and its impact on the Gulf of Mexico. J Geophys Res 117:C05039. doi:10.1029/2011JC007555

    Google Scholar 

  • Magana V, Amador JA, Medina S (1999) The mid-summer drought over Mexico and Central America. J Clim 12:1577–1588

    Article  Google Scholar 

  • Mestas-Nuñez AM, Enfield DB, Zhang C (2007) Water vapor fluxes over the Intra-Americas Sea: seasonal and interannual variability and associations with rainfall. J Clim 20:1910–1922

    Article  Google Scholar 

  • Misra V (2008a) Coupled interactions of the monsoons. Geophys Res Let L12705. doi:10.1029/2008GL033562

  • Misra V (2008b) Coupled air, sea, and land interactions of the South American monsoon. J Clim 21:6389–6403

    Article  Google Scholar 

  • Misra V, DiNapoli S (2012) The observed teleconnection between the equatorial Amazon and the Intra-Americas Seas. Clim Dyn. doi:10.1007/s00382-012-1474-1

    Google Scholar 

  • Misra V, DiNapoli S (2013) The variability of the Southeast Asian summer monsoon. Int J Climatol. doi:10.1002/joc.3735

    Google Scholar 

  • Misra V, Dirmeyer PA (2009) Air, sea, and land interactions of the continental US hyrdoclimate. J Hydromet 10:353–373

    Google Scholar 

  • Misra V, Chan S, Wu R, Chassignet E (2009) Air-sea interaction over the Atlantic warm pool in the NCEP CFS. Geophys Res Lett 36:L15702. doi:10.1029/2009GL038525

  • Mo K et al (2005) Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydromet 6:710–728

    Article  Google Scholar 

  • Mooers CNK, Maul G (1998) Intra-Americas sea circulation. The Sea. In: Robinson A, Brink KH (eds) The global coastal ocean, regional studies and syntheses, vol 11. Wiley, New York, pp 183–208

    Google Scholar 

  • Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002

    Article  Google Scholar 

  • Oey L-Y, Ezer T, Lee H-C (2005) Loop current, rings and related circulation in the Gulf of Mexico: an review of numerical models and future challenges. In: Sturges W, Lugo-Fernandez A (eds) Circulation in the Gulf of Mexico: observation and models. American Geophysical Union, Washington, DC, pp 31–56

  • Orlanski I, Sheldon J (1995) Stages in the energetics of baroclinic systems. Tellus 47A:605–628

    Article  Google Scholar 

  • Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 89:459–470

    Article  Google Scholar 

  • Rasmusson EM (1967) Atmospheric water vapor transport and the water balance of North America: part I. Characteristics of the water vapor flux field. Mon Weather Rev 95:403–426

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuickSCAT scatterometer data. J Phys Oceanogr 38:2379–2413

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International Satellite Cloud Climatology Project (ISCCP) Documentation of new cloud datasets. WMO/TD-No. 737, World Meteorological Organization, 115 pp

  • Ruiz-Barradas A, Nigam S (2005) Warm season rainfall variability over the U.S. great plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J Clim 18:1808–1830

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional ocean modeling system: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Model 9:347–404

    Google Scholar 

  • Shukla J, Palmer TN, Hagedorn R, Hoskins B, Kinter J, Marotzke J, Miller M, Slingo J (2010) Towards a new generation of world climate research and computing facilities. Bull Am Meteorol Soc 91:1407–1412

    Article  Google Scholar 

  • Slingo JM (1987) The development and verification of a cloud prediction model for the ECWMF model. Quart J Roy Meteorol Soc 113:899–927

    Article  Google Scholar 

  • Song YT, Haidvogel DB (1994) A semi-implicit ocean circulation model using a generalized topography following coordinate system. J Comput Phys 115:228–248

    Article  Google Scholar 

  • Sturges W, Lugo-Fernandez A (eds) (2005) Circulation in the Gulf of Mexico: observations and models. Geophys Mongr Ser 161:347, AGU, Washington DC. doi:10.1029/GM161

  • Tiedtke M (1983) The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. In: Proceedings of ECMWF workshop on convective in large-scale models, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, pp 297–316

  • Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi:10.1029/2005GL022734

    Article  Google Scholar 

  • Wang C, Enfield DB, Lee SK, Landsea CW (2006) Influences of the Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J Clim 19:3011–3028

    Article  Google Scholar 

  • Wu R, Kirtman BP, Pegion K (2006) Local air–sea relationship in observations and model simulations. J Clim 19:4914–4932

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xue Y, Huang B, Hu Z, Kumar A, Wen C, Behringer D, Nadiga S (2011) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37:2511–2539

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NOAA (NA12OAR4310078, NA10OAR4310215, NA11OAR4310110), and USDA (027865). Supercomputing was provided by TACC via XSEDE. Two anonymous reviewers helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Misra, V. Thirty-two-year ocean–atmosphere coupled downscaling of global reanalysis over the Intra-American Seas. Clim Dyn 43, 2471–2489 (2014). https://doi.org/10.1007/s00382-014-2069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2069-9

Keywords

Navigation