Skip to main content
Log in

A daytime measurement of the lunar contribution to the night sky brightness in LSST’s ugrizy bands–initial results

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope’s u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3–0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Astrodon: Astrodon photometrics sloan filters. Accessed: 2016-01-09 (2015). http://www.astrodon.com/sloan.html

  2. Holben, B.N., et al.: Aeronet - a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66(1), 1–16 (1998). doi:10.1016/S0034-4257(98)00031-5. ISSN 0034-4257

    Article  Google Scholar 

  3. Chéreau, F.: Stellarium. Accessed: 2016-01-09 (2014). http://www.stellarium.org/

  4. Coughlin, M., Claver, C.F., Stubbs, C., Tonry, J.L.: Optical All-Sky Camera for the Large Synoptic Survey Telescope. In: American Astronomical Society Meeting Abstracts #224, volume 224 of American Astronomical Society Meeting Abstracts, p #122.17 (2014)

  5. Delgado, F., Saha, A., Chandrasekharan, S., Cook, K., Petry, C., Ridgway, S.: The LSST operations simulator. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 9150 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p 915015 (2014), doi:10.1117/12.2056898

  6. Chromey, F.R., Hasselbacher, D.A.: The flat sky: calibration and background uniformity in wide field astronomical images. PASP 108, 944 (1996). doi:10.1086/133817

    Article  ADS  Google Scholar 

  7. High, F.W., Stubbs, C.W., Stalder, B., Gilmore, D.K., Tonry, J.L.: Sky variability in the y band at the LSST site. PASP 122, 722–730 (2010). doi:10.1086/653715

    Article  ADS  Google Scholar 

  8. Ivezic, Z., Tyson, J.A., Abel, B., Acosta, E., Allsman, R., AlSayyad, Y., Anderson, S.F., Andrew, J., Angel, R., Angeli, G., Ansari, R., Antilogus, P., Arndt, K.T., Astier, P., Aubourg, E., Axelrod, T., Bard, D.J., Barr, J.D., Barrau, A., Bartlett, J.G., Bauman, B.J., Beaumont, S., Becker, A.C., Becla, J., Beldica, C., Bellavia, S., Blanc, G., Blandford, R.D., Bloom, J.S., Bogart, J., Borne, K., Bosch, J.F., Boutigny, D., Brandt, W.N., Brown, M.E., Bullock, J.S., Burchat, P., Burke, D.L., Cagnoli, G., Calabrese, D., Chandrasekharan, S., Chesley, S., Cheu, E.C., Chiang, J., Claver, C.F., Connolly, A.J., Cook, K.H., Cooray, A., Covey, K.R., Cribbs, C., Cui, W., Cutri, R., Daubard, G., Daues, G., Delgado, F., Digel, S., Doherty, P., Dubois, R., Dubois-Felsmann, G.P., Durech, J., Eracleous, M., Ferguson, H., Frank, J., Freemon, M., Gangler, E., Gawiser, E., Geary, J.C., Gee, P., Geha, M., Gibson, R.R., Gilmore, D.K., Glanzman, T., Goodenow, I., Gressler, W.J., Gris, P., Guyonnet, A., Hascall, P.A., Haupt, J., Hernandez, F., Hogan, C., Huang, D., Huffer, M.E., Innes, W.R., Jacoby, S.H., Jain, B., Jee, J., Jernigan, J.G., Jevremovic, D., Johns, K., Jones, R.L., Juramy-Gilles, C., Juric, M., Kahn, S.M., Kalirai, J.S., Kallivayalil, N., Kalmbach, B., Kantor, J.P., Kasliwal, M.M., Kessler, R., Kirkby, D., Knox, L., Kotov, I., Krabbendam, V.L., Krughoff, S., Kubanek, P., Kuczewski, J., Kulkarni, S., Lambert, R., Le Guillou, L., Levine, D., Liang, M., Lim, K., Lintott, C., Lupton, R.H., Mahabal, A., Marshall, P., Marshall, S., May, M., McKercher, R., Migliore, M., Miller, M., Mills, D.J., Monet, D.G., Moniez, M., Neill, D.R., Nief, J., Nomerotski, A., Nordby, M., O’Connor, P., Oliver, J., Olivier, S.S., Olsen, K., Ortiz, S., Owen, R.E., Pain, R., Peterson, J.R., Petry, C.E., Pierfederici, F., Pietrowicz, S., Pike, R., Pinto, P.A., Plante, R., Plate, S., Price, P.A., Prouza, M., Radeka, V., Rajagopal, J., Rasmussen, A., Regnault, N., Ridgway, S.T., Ritz, S., Rosing, W., Roucelle, C., Rumore, M.R., Russo, S., Saha, A., Sassolas, B., Schalk, T.L., Schindler, R.H., Schneider, D.P., Schumacher, G., Sebag, J., Sembroski, G.H., Seppala, L.G., Shipsey, I., Silvestri, N., Smith, J.A., Smith, R.C., Strauss, M.A., Stubbs, C.W., Sweeney, D., Szalay, A., Takacs, P., Thaler, J.J., Van Berg, R., Vanden Berk, D., Vetter, K., Virieux, F., Xin, B., Walkowicz, L., Walter, C.W., Wang, D.L., Warner, M., Willman, B., Wittman, D., Wolff, S.C., Wood-Vasey, W.M., Yoachim, P., Zhan, H., for the LSST Collaboration: LSST: from Science Drivers to Reference Design and Anticipated Data Products. ArXiv e-prints (2008)

  9. Jones, A., Noll, S., Kausch, W., Szyszka, C., Kimeswenger, S.: An advanced scattered moonlight model for Cerro Paranal. A&A 560, A91 (2013). doi:10.1051/0004-6361/201322433

    Article  ADS  Google Scholar 

  10. Jones, A., Noll, S., Kausch, W., Kimeswenger, S.: An Advanced Scattered Moonlight Model. In: American Astronomical Society Meeting Abstracts #224, volume 224 of American Astronomical Society Meeting Abstracts, p #405.03 (2014)

  11. Krisciunas, K., Schaefer, B.: A model of the brightness of moonlight. Astronomical Society of the Pacific 103, 1033–1039 (1991). doi:10.1086/132921

    Article  ADS  Google Scholar 

  12. Kieffer, H.H., Stone, T.C.: The Spectral Irradiance of the Moon. AJ 129, 2887–2901 (2005). doi:10.1086/430185

    Article  ADS  Google Scholar 

  13. Noll, S., Kausch, W., Barden, M., Jones, A.M., Szyszka, C., Kimeswenger, S., Vinther, J.: An atmospheric radiation model for Cerro Paranal. I. The optical spectral range. A&A 543, A92 (2012). doi:10.1051/0004-6361/201219040

    Article  ADS  Google Scholar 

  14. Stubbs, C.W., High, F.W., George, M.R., DeRose, K.L., Blondin, S., Tonry, J.L., Chambers, K.C., Granett, B.R., Burke, D.L., Smith, R.C.: Toward more precise survey photometry for PanSTARRS and LSST: measuring directly the optical transmission spectrum of the atmosphere. PASP 119, 1163–1178 (2007). doi:10.1086/522208

    Article  ADS  Google Scholar 

  15. Walker, A.: Noao newsletter. NOAO Newsletter 10, 16 (1987)

    Google Scholar 

  16. Winkler, H., van Wyk, F., Marang, F.: South African night sky brightness during high aerosol epochs. ArXiv e-prints (2014)

Download references

Acknowledgments

MC was supported by the National Science Foundation Graduate Research Fellowship Program, under NSF grant number DGE 1144152. CWS is grateful to the DOE Office of Science for their support under award DE-SC0007881. Thanks also to Prof. Gary Swensen of Univ. of Illinois for hospitality in the ALO building at Pachon. We would also like to thank Dr. Tom Stone and an anonymous referee for comprehensive comments on an initial version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Coughlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coughlin, M., Stubbs, C. & Claver, C. A daytime measurement of the lunar contribution to the night sky brightness in LSST’s ugrizy bands–initial results. Exp Astron 41, 393–408 (2016). https://doi.org/10.1007/s10686-016-9494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-016-9494-1

Keywords

Navigation